A charecteristic property of a convex centrosymmetric curve

G.Tsintsifas

It is well known, that for a centrosymmetric closed convex curve, the support lines to the endpoints of a chord through the center are parallel see [1]. This property is characteristic of the central convex curves. So we will prove the following theorem.
Theorem: If a closed smooth convex curve (c) in E^{2} and an interior point O have the property that (c) possesses parallel supporting lines at the endpoints of every chord through O, then the (c) is centrosymmetrc and O is the center.

Proof

Let O an interior point and $\vec{r}=r(\vec{M})$ the position vector of the point $M \in$ (c).

Suppose $\phi=\angle\left(\vec{r}, \overrightarrow{\epsilon_{0}}\right)$. We will have:
$\vec{r}=r \overrightarrow{r_{0}}$, hence:

$$
\begin{equation*}
\frac{d \vec{r}}{d s}=\overrightarrow{\epsilon_{0}}=\frac{d r}{d s} \overrightarrow{r_{0}}+r \frac{d \overrightarrow{r_{o}}}{d s} \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\vec{r} \cdot \vec{\epsilon}_{0}=r \frac{d r}{d s} \tag{2}
\end{equation*}
$$

that is:

$$
\begin{equation*}
\frac{d r}{d s}=\cos \phi \tag{3}
\end{equation*}
$$

The last equation, combining with the well known $d s^{2}=r^{2}(d \theta)^{2}+(d r)^{2}$ gives:

$$
\begin{equation*}
\frac{d r(\theta)}{d \theta}=r(\theta) \cot \phi \tag{4}
\end{equation*}
$$

We choose as $O x$ axis the chord of (c) with middle point the point O . The angle θ is: $\theta=\angle(O x, O M)$ and $0 \leq \theta \leq 2 \pi$.

Let now $M N$ a chord through O and $\overrightarrow{O M}=\vec{r}(\theta), \overrightarrow{O N}=\vec{r}(\theta+\pi)$ and $\epsilon(\theta), \epsilon(\theta+\pi)$ the parallel support lines at the points M and N respectively. According the above we will have.

$$
\frac{1}{r(\theta)} \cdot \frac{d r(\theta)}{d \theta}=\frac{1}{r(\theta+\pi)} \cdot \frac{d r(\theta+\pi)}{d \theta}=\cot \phi .
$$

or

$$
\frac{d(\log r(\theta))}{d \theta}=\frac{d(\log r(\theta+\pi))}{d \theta}
$$

and

$$
\log r(\theta)=\log r(\theta+\pi)+c(\text { const }) .
$$

But $c=0$ because of $r(0)=r(\pi)$. Therefore follows $r(\theta)=r(\theta+\pi)$.

We point out here that the theorem holds for a general closed convex curve, because if (c) possesses a str.line segment $A B$ and A^{\prime}, B^{\prime} the central projections of A and B through O respectively on c, then the str.line segment $A^{\prime} B^{\prime}$ belongs to c. But, from the neighbor of A (smooth part of c), we see that the points A and A^{\prime} must be symmetric about O, so the $A B A^{\prime} B^{\prime}$ must be parallelogramme. For the case (c)polygon and $\mathrm{AB}, \mathrm{A}^{\prime} \mathrm{B}^{\prime}$ opposite sides, we see that $\mathrm{AB} / / \mathrm{A}^{\prime} \mathrm{B}^{\prime}$ and from the series of the similar triangles with common vertex O , we can see that $\frac{A B}{A^{\prime} B^{\prime}}=\frac{A^{\prime} B^{\prime}}{A B}$, that is $\mathrm{AB}=\mathrm{A}^{\prime} \mathrm{B}^{\prime}$. Therefore (c) must be a central polygon (an affine image of a regular polygon).

Reference.

1. Theory of convex bodies, T•Bonnesen, W.Fenchel, B, Associates.
