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Introduction
It is well known that there is a triangle of minimum area circumscribed to
a smooth closed compact convex curve (c) in E?, see [1],[2]. In this note we
solve the analogous problem for the perimeter. Theorems of the Analysis
assure us that there is at least one triangle T of minimum perimeter circum-
scribed to (c), see [3]. We proved the following theorem.
Theorem
For every triangle T circumscribed to (c) the excircles of T are tangent to
(c). Proof
We proceed by contraposition. We suppose that the triangle T=ABC, of
minimum perimeter, is circumscribed to (c¢) and (/,,r,) the excircle to BC.
We denote by D the tangent point of (1,,r,) to BC by W the tangent point of
BC to (c) and by M the tangent point on AC. From the elementary Geometry
we know that:

AM = ;(AB+BC+CA) (1)

We assume that W # D see fig(1).
We consider now a movement of a circle (I,r) from the position of (I,,7,)
towards the (c), such a way that (I,r) remains tangent to the sides of the
angle BAC and homothetic to (1,,7,) with center of Homothesy A and ratio
~ = k(variable) < 1.
" The final position of the circle (Ir) will be the circle (ly,r9) which is
tangent to (c) at the point Wy and tangent to the sides of the angle BAC



Figure 1:

(My onAB), see fig (1). The triangle ABC will be the triangle AByC and
its perimeter is:

1
AMy = S(ABy + BoCy + CoA). (2)

Obviously AM > AM, and from (1) and (2) follows the contradiction.

A second Proof

We can also obtain a second and very interesting proof using Differential
Geometry. We denote:

. AB . AC -
|AB| =¢, 22 =&, |AC|=b, ==
c c
. BC . .
|BC’ =a T 2607 |WB| = Ty, |WC| = T2.

see fig 2.
Let O be the origin and Q a point of (c¢). The posotion of a point W

depends on the arc length s from Q to W. We parametrize on the (c) coun-
terclockwise.
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Figure 2:

Let 7(s) = OW. We have:

OW+WB:O_A+C-CB, or

4 ar - -
r(s)—m% =0A+c-¢
7?(8)—1’1~€B:O_;4+C'CB. (3)

We denote €), 1y the unit tangent and the principal normal, from Frenet
formulas and from (3) follows:

F(s) — T1€ — TiEy =G, or

€0 — T160 —x1 - k-1 = ¢ ¢y, (4)

Where k the curvature of (c) at the point W. We multiplay (4) succesively
by €5, 19. We take:
1 — 41 = ¢é(— cosB) (5)

—x1 -k = ¢ sinB. (6)



Therefore:

d(C+LE1>_ . _ZEl k _LL’l B
ds Ry smB
or o )
ctx
P V=1 -z -k cotg—. (7)
Similarly, we find:
d(b+ C
<c152) =—(1—x9-k cotgg). (8)
From (7),(8) we take:
dla+b+c) B C
B e —x1 -k coth + a9k cotg;.
So to minimize a+b+c:
dla+b+c)
—= =0
ds
or B o
T cotg; = Ty cotg;, 9)

This last equation (9) says that the perpendicular to BC at the point W
intersects the bissectrices of the exterior angles of B and C at the points T
and P so that WT=WP. Therefore the excircle of BC is tangent to (c) at the
point W.

Remarks

1. The above theorem can be easily generalized to a n-gon circumscribed
to (c), e.g. for a 6-gon Py = A1 AsA3A4A5As. We project the sides and
externaly to Py we take successively the triangles T = A;B1Ay, T =
AsByAs, ... Ts = AsBsA1(A1Ag N AyAs = By, ete). For the 6-gon of a
minimum perimeter circumscribed to (c¢) the incircles in 7; must be tangent
to (c).

2. It would be quite interesting an analogous problem to E?, that is:

Find the tetrahedron of a minimum surface circumscribed to a convex body.
3 The proved theorem in £? | with the above two proofs, has been submitted
by the author to Crux as a problem dedicated to the memory of my friend
Murray Klamkin. Here it is published by the permission of Crux.
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