The triangle of minimum perimeter circumscribed to a smooth closed compact convex curve in the plane.

G. A. Tsintsifas Thessaloniki, Greece

Introduction

It is well known that there is a triangle of minimum area circumscribed to a smooth closed compact convex curve (c) in E^2 , see [1],[2]. In this note we solve the analogous problem for the perimeter. Theorems of the Analysis assure us that there is at least one triangle T of minimum perimeter circumscribed to (c), see [3]. We proved the following theorem.

Theorem

For every triangle T circumscribed to (c) the excircles of T are tangent to (c). **Proof**

We proceed by contraposition. We suppose that the triangle T=ABC, of minimum perimeter, is circumscribed to (c) and (I_a, r_a) the excircle to BC. We denote by D the tangent point of (I_a, r_a) to BC by W the tangent point of BC to (c) and by M the tangent point on AC. From the elementary Geometry we know that:

$$AM = \frac{1}{2}(AB + BC + CA) \tag{1}$$

We assume that $W \neq D$ see fig(1).

We consider now a movement of a circle (I,r) from the position of (I_a, r_a) towards the (c), such a way that (I,r) remains tangent to the sides of the angle BAC and homothetic to (I_a, r_a) with center of Homothesy A and ratio $\frac{r}{r_a} = k(variable) < 1.$

The final position of the circle (I,r) will be the circle (I_0, r_0) which is tangent to (c) at the point W_0 and tangent to the sides of the angle BAC

Figure 1:

 $(M_0 \ onAB)$, see fig (1). The triangle ABC will be the triangle AB_0C_0 and its perimeter is:

$$AM_0 = \frac{1}{2}(AB_0 + B_0C_0 + C_0A).$$
 (2)

Obviously $AM > AM_0$ and from (1) and (2) follows the contradiction. A second **Proof**

We can also obtain a second and very interesting proof using Differential Geometry. We denote:

$$|\vec{AB}| = c, \ \ \frac{\vec{AB}}{c} = \vec{c}_0, \ \ |\vec{AC}| = b, \ \ \frac{\vec{AC}}{c} = \vec{b}_0$$

 $|\vec{BC}| = a \ \ \frac{\vec{BC}}{a} = \vec{a}_0, \ \ |\vec{WB}| = x_1, \ \ |\vec{WC}| = x_2.$

see fig 2.

Let O be the origin and Q a point of (c). The posotion of a point W depends on the arc length s from Q to W. We parametrize on the (c) counterclockwise.

Figure 2:

Let $\vec{r}(s) = \vec{OW}$. We have:

$$\vec{OW} + \vec{WB} = \vec{OA} + c \cdot \vec{c_0}, \quad or$$

$$\vec{r}(s) - x_1 \frac{d\vec{r}}{ds} = \vec{OA} + c \cdot \vec{c_0}$$

$$\vec{r}(s) - x_1 \cdot \vec{c_0} = \vec{OA} + c \cdot \vec{c_0}.$$
 (3)

We denote $\vec{\epsilon_0}$, $\vec{\eta_0}$ the unit tangent and the principal normal, from Frenet formulas and from (3) follows:

$$\dot{\vec{r}}(s) - \dot{x_1} \vec{\epsilon_0} - x_1 \dot{\vec{e_0}} = \dot{c} \cdot \vec{c_0}, \quad or \vec{\epsilon_0} - \dot{x_1} \vec{\epsilon_0} - x_1 \cdot k \cdot \vec{\eta_0} = \dot{c} \cdot \vec{c_0}.$$
(4)

Where k the curvature of (c) at the point W. We multiplay (4) successively by $\vec{\epsilon_0}$, $\vec{\eta_0}$. We take:

$$1 - \dot{x}_1 = \dot{c}(-\cos B) \tag{5}$$

$$-x_1 \cdot k = \dot{c} \, \sin B. \tag{6}$$

Therefore:

or

$$\frac{d(c+x_1)}{ds} = \dot{c} + \dot{x}_1 = \frac{x_1 \cdot k}{\sin B} + 1 - \frac{x_1 \cdot k}{\sin B} \cos B$$
$$\frac{d(c+x_1)}{ds} = 1 - x_1 \cdot k \ \cot g \frac{B}{2}.$$
(7)

Similarly, we find:

$$\frac{d(b+x_2)}{ds} = -(1-x_2 \cdot k \ \cot g \frac{C}{2}). \tag{8}$$

From (7),(8) we take:

$$\frac{d(a+b+c)}{ds} = -x_1 \cdot k \ \cot g \frac{B}{2} + x_2 \cdot k \ \cot g \frac{C}{2}$$

So to minimize a+b+c:

$$\frac{d(a+b+c)}{ds} = 0$$

or

$$x_1 \ \cot g \frac{B}{2} = x_2 \ \cot g \frac{C}{2},\tag{9}$$

This last equation (9) says that the perpendicular to BC at the point W intersects the bissectrices of the exterior angles of B and C at the points T and P so that WT=WP. Therefore the excircle of BC is tangent to (c) at the point W.

Remarks

1. The above theorem can be easily generalized to a n-gon circumscribed to (c), e.g. for a 6-gon $P_6 = A_1A_2A_3A_4A_5A_6$. We project the sides and externally to P_6 we take successively the triangles $T_1 = A_1B_1A_2$, $T_2 = A_2B_2A_3$, $T_6 = A_6B_6A_1(A_1A_6 \cap A_2A_3 = B_1, etc)$. For the 6-gon of a minimum perimeter circumscribed to (c) the incircles in T_i must be tangent to (c).

2. It would be quite interesting an analogous problem to E^3 , that is:

Find the tetrahedron of a minimum surface circumscribed to a convex body. 3 The proved theorem in E^2 , with the above two proofs, has been submitted by the author to Crux as a problem dedicated to the memory of my friend Murray Klamkin. Here it is published by the permission of Crux.

References

1. G. D. Chakerian and L. H. Lange, Geometric Extremum Problems,

Math.Magazine, vol44, No 2, pp 57-69.

2. M. M. Day, Polygons circumscribed about closed convex curves, Trans. Am. Soc. Vol 62, pp 315-319, 1957.

3. Crux, September 2005, KLAMKIN 13, submitted by George Tsintsifas and solved by Yufel Zhao in Crux September 2006.