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Introduction
In this paper our purpose is to reproduce some pioneering inequalities be-
tween two triangles, like O.Bottema’s (see G.I.1 12.56) and Pedoe- Newberg
(see G.I.1 10.8). To this direction we use a compact method obtaining a
number of new and very interesting inequalities.
It is well known that from a triangle T = ABC and a point M of its plane
we can construct a triangle T ′ having as sides

ax1, b.x2, c.x3

We will prove two remarkable lemmas
lemma 1.
We suppose that M is an interior point in the triangle ABC, the triangle T ′

has angles

ta = 6 BMC − A, tb = 6 CMA−B, tc = 6 AMC − C

opposite to the sides a′ = ax1, b
′ = bx2, c

′ = cx3 respectively.
Proof
We construct the triangle AM ′C similar to AMB. It is elementary to see
that the triangles BAC and MAM ′ are similar and the triangle MCM ′ has
as sides

CM, MM ′ =
a

c
.AM, CM ′ =

b

c
.BM

that is the triangle MCM ′ is similar to the triangle T ′, with ratio c. Therefore
triangle(a.AM, b.BM, cCM) is simimlar to the triangle (MM ′, CM”, CM)
and we see ta = 6 BMC − A, tb = 6 CMA−B, tc = 6 AMC − C.
Here we have to point out that if M is an exterior point of the triangle ABC
we can with a similar way, calculate the angles of the triangle T ′. So if M is
an exterior pint but in the angle A follows that:
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6 BMC = A + ta, 6 CMA = B + tb, 6 AMB = C + tc
lemma 2
Let ABC,A′B′C ′ two triangles and M the point from the relation

x1 :
a′

a
= x2 :

b′

b
= +x3 :

c′

c
= k

where AM = x1, BM = x2 = CM = x3

We will prove that :

k =
abc(

P
2

+ 8FF ′
)1/2

(1)

where P =
∑

a2(−a′2 + b′2 + c′2) and F, F ′ the area of the triangles ABC
and A′B′C ′. The sum is cyclic over a, b, c and a′, b′, c′.
proof
The triangle T ′ with sides ax1, bx2, cx3, according the first lemma, is similar
to A′B′C ′.
Therefore we have:

6 BMC = A + A′, 6 AMC = B + B′, 6 AMB = C + C ′.

Cosinus theorem in the triangle BMC gives:

a2 = x2
2 + x2

3 − 2x2x3cos(A + A′)

or

a2 = k2
[
b′2

b2
+

c′2

c2
− 2b′c′

bc
cos(A + A′)

]
From this point, after some easy manipulations, we take (1).
Here we have to point out that the existance of the point M can be assured
by the lemma (1). So, if A + A′ ≤ 1800, B + B′ ≤ 1800, C + C ′ ≤ 1800, the
point M is an interior point in the triangle ABC and belongs to the three
arcs BC,CA,AB with inscibed angles A + A′, B + B′, C + C ′ respectively.
Assuming that A + A′ ≥ 1800 the point M is an exterior point lying in the
angle A and so that: 6 BMC + A = 3600 − A ≥ 1800.
That is M is an interior point of the circle ABC.
Also another remarcable comment is that the pedal triangle of the point M
is similar to A′B′C ′.
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Indeed we denote by D,E, F the projections of M on BC,CA,AB respec-
tively. We easily find:

6 BMC = A + D

but we know that 6 BMC = A + A′. Hence D = A′. Similarly E = B′, F =
C ′.
Inequalities
Bottema’s inequality.
Let ABC,A′B′C ′ two triangles and N be apoint of its plane. We denote
AN = y1, BN = y2, CN = y3. Bottema’s inequality asserts:

a′y1 + b′y2 + c′y3 ≥
[
P

2
+ 8FF ′

] 1
2

(2)

where, we denote

P =
∑

a2(−a′2+b′2+c′2) = a2(−a′2+b′2+c′2)+b2(a′2−b′2+c′2)+c2(a′2+b′2−c′2)

Proof
We choose the point M so that

x1 :
a′

a
= x2 :

b′

b
= +x3 :

c′

c
= k

where AM = x1, BM = x2, CM = x3

It is known see(G.I.2 XI 3.4 ) that

ax1y1 + bx2y2 + cx3y3 ≥ abc

Bottema’s inequality follows from the above and (1).
Pedoe-Neuberg’s inequality
For the two triangles ABC,A′B′C ′ the Pedoe-Neuberg’s inequality asserts:

P =
∑

a2(−a′2 + b′2 + c′2) ≥ 16FF ′ (3)

where F, F ′ the area of the triangles.
Proof a.
Let T0 be the pedal triangle of the point M see Lemma 2 and R0 its circum-
radius. The triangle T0 is similar to A′B′C ′ so we have R0 = kR′ (a)
where R′ the circuradius of A′B′C ′.
The reader can as problem prove that

x1x2x3 ≤ R.R0 (4)
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From (1) ,(a) and (4) follows the Pedoe-Neuberg’s inequality.
Proof b
We obtain a second proof directly, without the help of the relation (4) using
only the lemma 2 and the pendal triangle of the point M. We will have:

x1 :
EF

a
= x2 :

DF

b
= x3 :

FD

c
= l1

but EF = x1sinA = x1
a
2R

, therefore

l1 = 2R (5)

Also

l1 =
abc[

P1

2
+ 8F ((DEF )

] 1
2

(6)

where P1 =
∑

a2(−FE2 + DE2 + DF 2). From (5),(6) we find

P1

2
+ 8F.(DEF ) = 4F 2

but (DEF ) ≤ F
4

Therefore P1 ≥ 16F (DEF ).
The similarity of DEF and A′B′C” leads us to the Pedoe-Neuberg’s inequal-
ity.
Other remarcable two triangle inequalities
From the well known inequality

ax2
1 + bx2

2 + cx2
3 ≥ abc

see (G.I.2 3.13 ), and from lemma (2) formula (1), follows that:

a′2

a
+

b′2

b
+

c′2

c
≥ P

2
+ 8F.F ′ (7)

From the inequality

ax2x3 + bx1x3 + cx1x2 ≥ abc

and lemma 2,formula (1), follows that:

a2b′c′ + b2a′c′ + c2a′b′ ≥ P

2
+ 8F.F ′ (8)

4



from the well known inequality

ax1 + bx2 + cx3 ≥ 4F

and lemma 2 we take

a′ + b′ + c′ ≥ 1

R

[
P

2
+ 8F.F ′

] 1
1

(9)

similarly

a + b + c ≥ 1

R′

[
P

2
+ 8F.F ′

] 1
1

and finally

4S.S ′ ≥ 1

R.R′

[
P

2
+ 8F.F ′

]
(9a)

Two interesting triangle inequalities
We construct equilateral triangles BCQ,CAR,ABS on the sides of the tri-
angle ABC. Let M be an interior point in the triangle ABC and we denote
AM = x1, BM = x2, CM = x3. From the quadralateral ASMR follows:

x1.SR ≥ 2(SAM) + 2(RAM)

or
x1(b + c) ≥ 2(SAM) + 2(RAM)

Two other inequalities follows with the same way.So adding we take:

(b + c)x1 + (c + a)x2 + (a + b)x3 ≥ 2F + 2(BCQ) + 2(ACR) + 2(ABS)

or

(b + c)x1 + (c + a)x2 + (a + b)x3 ≥ 2F +

√
3

2
(a2 + b2 + c2)

but we know that a2 + b2 + c2 ≥ 4F
√

3, therefore

(b + c)x1 + (c + a)x2 + (a + b)x3 ≥ 8F (10)

The area of the triangle QRS is

(QRS) = F +

√
3

4
(a2 + b2 + c2)
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consequantly

(QRS) = F +

√
3

4
(a2 + b2 + c2) ≥ 8F

For the QRS and the point M holds

SR.QM + QR.SM + SQ.RM ≥ 4(QRS)

so we have ∑
(b + c)(x2 + x3) ≥ 16F (11)

Where the sum over a, b, c x1, x2, x3

The above (10) and (11) inequalities using the lemma 2 respectively give:

∑
(b + c)

a′

a
≥ 2

R

[
P

2
+ 8F.F ′

] 1
2

(12)

∑
(b + c)

[
b′

b
+

c′

c

]
≥ 4

R

[
P

2
+ 8F.F ′

] 1
2

(13)

Leibniz’s formula and its applications to two triangle inequalities.
For the weighted system A(m1), B(m2), C(m3) Leibniz’ s formula asserts:

m1x
2
1 + m2x

2
2 + m3x

2
3 = mGM2 +

1

m
(m2m3a

2 + m3m1b
2 + m1m2c

2) (14)

where m = m1 + m2 + m3 and G the cendroid of the system, that is:

~OG =
m1

~OA + m2
~OB + m3

~OC

m

and m1,m2,m3 the distances of the point M from the vertices of the triangle
ABC respectively. From (14) arises the inequality:

m(m1x
2
1 + m2x

2
2 + m3x

2
3) ≥ m2m3a

2 + m3m1b
2 + m1m2c

2 (15)

The inequality (15) can produce a long number of inequalities according the
position 0f the point G in the triangle ABC. we will give some from these
inequalities below. We omit as exercises the proofs.

m2(R2 −OM2) =
∑

m1m2c
2 (16)

∑
(b + c)x2

1 ≥
(a + b)(b + c)(c + a)

4
(17)
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∑
b2c2x2

1 ≥ a2b2c2 (18)∑
a(b + c)x2

1 ≥
4S

3
abc (19)

∑
bcx2

1 ≥
2S

3
abc (20)

∑
(b2 + c2)x2

1 ≥
2

3
(a2b2 + b2c2 + c2a2) (21)

∑ bc

b + c
x2
1 ≥

2abc

(a + b)(b + c)(c + a)
(22)

∑ x2
1

b2 + c2
≥ 1

2.5
(23)

The application of our lemma (2) to the above formulas will give remarcable
ineqalities. From (15) we take

m
∑

m2
1

a′2

a2
≥ P/2 + 8F.F ′

a2b2c2
∑

m2m3a
2 (24)

The above formula (24) for A′B′C ′ = BAC gives

m
∑

m1
b2

a2
≥ (

∑ 1

a2
)
∑

m2m3a
2 (25)

Formula (25) for m1 = m2 = m3 = 1 asserts

3(
b2

a2
+

c2

b2
+

a2

c2
) ≥ (

1

a2
+

1

b2
+

1

c2
)(a2 + b2 + c2) (26)

Also from (24) for m1 = m2 = m3 we take

a′2

a2
+

b′2

b2
+

c′2

c2
≥ a2 + b2 + c2

3

[
P/2 + 8F.F ′

a2b2c2

]
(27)

From (24),for m1 = a
a′
,m2 = b

b′
,m3 = c

c′
, we take

(
∑ a

a′
)(
∑ a′

a
) ≥ aa′ + bb′ + cc′

abc.a′b′c′
(P/2 + 8F.F ′) (28)

From (28) for a′ = b, b′ = c′c′ = a we find

(a2c + b2a + c2b)(ac2 + b2a + cb2) ≥ (ab + bc + ca)(a2b2 + b2c2 + c2a2) (29)
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From (17) we take :

∑
(b + c)

a′2

a2
≥ (a + b)(b + c)(c + a)

4a2b2c2
(P/2 + 8F.F ′) (30)

From (30), setting a′ = b′ = c′ = 1 we take

∑ b + c

a2
≥ (a + b)(b + c)(c + a)

4a2b2c2

[
(a2 + b2 + c2)/2 + 2F

√
3
]

or ∑
b2c2(b + c) ≥ (a + b)(b + c)(c + a)F

√
3 (31)

because of a2 + b2 + c2 ≥ 4F
√

3 From (18) and lemma (2) we take:

∑(
a′bc

a

)2

≥ P/2 + 8F.F ′ (32)

and for a′ = b′ = c′ = 1

∑(
bc

a

)2

≥ a2 + b2 + c2

2
+ 2F

√
3 (33)

From (19),(20),(21),(22),(23) follows respectively.

∑ b + c

a
a′2 ≥ 4S

3abc

[
P/2 + 8F.F ′

]
(34)

∑ bc

a2
a′2 ≥ 2S

3abc
(P/2 + 8F.F ′) (35)

∑ b2 + c2

a2
a′2 ≥ 2

3

[
1

a2
+

1

b2
+

1

c2

][
P/2 + 8F.F ′

]
(36)

∑ bc

b + c

a′2

a2
≥

2
[
P/2 + 8F.F ′

]
abc(a + b)(b + c)(c + a)

(37)

∑ a′2

a2(b2 + c2)
≥ P/2 + 8F.F ′

a2b2c2
(38)

The above inequalities give very interesting results for the special cases of
A′B′C ′ = (a′, b′, c′). Here we denote by a′, b′, c′ the sides of the ABC. Taking
A′B′C ′ = (1, 1, 1) or A′B′C ′ = (b, c, a), or A′B′C ′ = (a, b, c),we find a class
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of very important inequalities.
We assume now that M1 and M2 are defined so that—

AM1 :
b′

a
= BM1 :

c′

b
= CM1 :

a′

c
= k1

AM2 :
c′

a
= BM2 :

a′

b
= CM2 :

b′

c
= k2

where a′, b′, c′ the sides of the triangle A′B′C ′. According lemma 2 from the
inequality (2) follows.

∑
bcb′c′ ≥

[
P1/2 + 8FF ′

]1/2[
P2/2 + 8FF ′

]1/2
(39)

where

P1 =
∑

a2(−b′2 + c′2 + a′2), P2 =
∑

a2(−c′2 + b′2 + a′2)

Let ABC,A′B′C ′ two triangles and M ′ a point. We denote by A′M ′ =
x′
1, B

′M ′ = x′
2, C

′M ′ = x′
3, a1 = a′x′

1, b1 = b′x′
2, c1 = c′x′

3, A1B1C1 the trian-
gle with sides a1, b1, c1 F1 its area and P1 =

∑
a2(−a21 + b21 + c21)

According lemma 1 we can find the point M so that

AM :
a1
a

= BM :
b1
b

= CM :
c1
c

= k1 (40)

We know that is:
a.AM + b.BM + c.CM ≥ 4F

Hence from lemma 2 and the above inequality we take

a′x1x
′
1 + b′x′

2x2 + c′x′
3x3 ≥

[
P1/2 + 8FF ′

]2
(41)

From
aAM2 + bBM2 + cCM2 ≥ abc

and (40) we find: ∑
bca′2x′2

1 ≥ P1/2 + 8FF1 (42)

We see that, the main source of the above 42 inequalities are the lemma
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1 and the lemma 2. We found aout and some other inequalities working by
similar tehnics, but we think, that the possibilities are clear, so we stop here.
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