Two-triangle inequalities.

G. A. Tsintsifas

Introduction

In this paper our purpose is to reproduce some pioneering inequalities between two triangles, like O.Bottema's (see G.I.1 12.56) and Pedoe- Newberg (see G.I.1 10.8). To this direction we use a compact method obtaining a number of new and very interesting inequalities.
It is well known that from a triangle $T=A B C$ and a point M of its plane we can construct a triangle T^{\prime} having as sides

$$
a x_{1}, b . x_{2}, c . x_{3}
$$

We will prove two remarkable lemmas

lemma 1.

We suppose that M is an interior point in the triangle $A B C$, the triangle T^{\prime} has angles

$$
t_{a}=\angle B M C-A, \quad t_{b}=\angle C M A-B, \quad t_{c}=\angle A M C-C
$$

opposite to the sides $a^{\prime}=a x_{1}, b^{\prime}=b x_{2}, c^{\prime}=c x_{3}$ respectively.

Proof

We construct the triangle $A M^{\prime} C$ similar to $A M B$. It is elementary to see that the triangles $B A C$ and $M A M^{\prime}$ are similar and the triangle $M C M^{\prime}$ has as sides

$$
C M, \quad M M^{\prime}=\frac{a}{c} \cdot A M, \quad C M^{\prime}=\frac{b}{c} \cdot B M
$$

that is the triangle $M C M^{\prime}$ is similar to the triangle T^{\prime}, with ratio c. Therefore triangle $(a . A M, b . B M, c C M)$ is simimlar to the triangle ($M M^{\prime}, C M ", C M$) and we see $t_{a}=\angle B M C-A, \quad t_{b}=\angle C M A-B, \quad t_{c}=\angle A M C-C$.
Here we have to point out that if M is an exterior point of the triangle $A B C$ we can with a similar way, calculate the angles of the triangle T^{\prime}. So if M is an exterior pint but in the angle A follows that:
$\angle B M C=A+t_{a}, \angle C M A=B+t_{b}, \angle A M B=C+t_{c}$
lemma 2
Let $A B C, A^{\prime} B^{\prime} C^{\prime}$ two triangles and M the point from the relation

$$
x_{1}: \frac{a^{\prime}}{a}=x_{2}: \frac{b^{\prime}}{b}=+x_{3}: \frac{c^{\prime}}{c}=k
$$

where $A M=x_{1}, B M=x_{2}=C M=x_{3}$
We will prove that:

$$
\begin{equation*}
k=\frac{a b c}{\left(\frac{P}{2}+8 F F^{\prime}\right)^{1 / 2}} \tag{1}
\end{equation*}
$$

where $P=\sum a^{2}\left(-a^{\prime 2}+b^{\prime 2}+c^{\prime 2}\right)$ and F, F^{\prime} the area of the triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$. The sum is cyclic over a, b, c and $a^{\prime}, b^{\prime}, c^{\prime}$.
proof
The triangle T^{\prime} with sides $a x_{1}, b x_{2}, c x_{3}$, according the first lemma, is similar to $A^{\prime} B^{\prime} C^{\prime}$.
Therefore we have:

$$
\angle B M C=A+A^{\prime}, \quad \angle A M C=B+B^{\prime}, \quad \angle A M B=C+C^{\prime}
$$

Cosinus theorem in the triangle $B M C$ gives:

$$
a^{2}=x_{2}^{2}+x_{3}^{2}-2 x_{2} x_{3} \cos \left(A+A^{\prime}\right)
$$

or

$$
a^{2}=k^{2}\left[\frac{b^{\prime 2}}{b^{2}}+\frac{c^{\prime 2}}{c^{2}}-\frac{2 b^{\prime} c^{\prime}}{b c} \cos \left(A+A^{\prime}\right)\right]
$$

From this point, after some easy manipulations, we take (1).
Here we have to point out that the existance of the point M can be assured by the lemma (1). So, if $A+A^{\prime} \leq 180^{\circ}, B+B^{\prime} \leq 180^{\circ}, C+C^{\prime} \leq 180^{\circ}$, the point M is an interior point in the triangle $A B C$ and belongs to the three $\operatorname{arcs} B C, C A, A B$ with inscibed angles $A+A^{\prime}, B+B^{\prime}, C+C^{\prime}$ respectively. Assuming that $A+A^{\prime} \geq 180^{\circ}$ the point M is an exterior point lying in the angle A and so that: $\angle B M C+A=360^{\circ}-A \geq 180^{\circ}$.
That is M is an interior point of the circle $A B C$.
Also another remarcable comment is that the pedal triangle of the point M is similar to $A^{\prime} B^{\prime} C^{\prime}$.

Indeed we denote by D, E, F the projections of M on $B C, C A, A B$ respectively. We easily find:

$$
\angle B M C=A+D
$$

but we know that $\angle B M C=A+A^{\prime}$. Hence $D=A^{\prime}$. Similarly $E=B^{\prime}, F=$ C^{\prime}.

Inequalities

Bottema's inequality.
Let $A B C, A^{\prime} B^{\prime} C^{\prime}$ two triangles and N be apoint of its plane. We denote $A N=y_{1}, \quad B N=y_{2}, \quad C N=y_{3}$. Bottema's inequality asserts:

$$
\begin{equation*}
a^{\prime} y_{1}+b^{\prime} y_{2}+c^{\prime} y_{3} \geq\left[\frac{P}{2}+8 F F^{\prime}\right]^{\frac{1}{2}} \tag{2}
\end{equation*}
$$

where, we denote
$P=\sum a^{2}\left(-a^{\prime 2}+b^{\prime 2}+c^{\prime 2}\right)=a^{2}\left(-a^{\prime 2}+b^{\prime 2}+c^{\prime 2}\right)+b^{2}\left(a^{\prime 2}-b^{\prime 2}+c^{\prime 2}\right)+c^{2}\left(a^{\prime 2}+b^{\prime 2}-c^{\prime 2}\right)$

Proof

We choose the point M so that

$$
x_{1}: \frac{a^{\prime}}{a}=x_{2}: \frac{b^{\prime}}{b}=+x_{3}: \frac{c^{\prime}}{c}=k
$$

where $A M=x_{1}, \quad B M=x_{2}, \quad C M=x_{3}$
It is known see(G.I. 2 XI 3.4) that

$$
a x_{1} y_{1}+b x_{2} y_{2}+c x_{3} y_{3} \geq a b c
$$

Bottema's inequality follows from the above and (1).
Pedoe-Neuberg's inequality
For the two triangles $A B C, A^{\prime} B^{\prime} C^{\prime}$ the Pedoe-Neuberg's inequality asserts:

$$
\begin{equation*}
P=\sum a^{2}\left(-a^{\prime 2}+b^{\prime 2}+c^{\prime 2}\right) \geq 16 F F^{\prime} \tag{3}
\end{equation*}
$$

where F, F^{\prime} the area of the triangles.

Proof a.

Let T_{0} be the pedal triangle of the point M see Lemma 2 and R_{0} its circumradius. The triangle T_{0} is similar to $A^{\prime} B^{\prime} C^{\prime}$ so we have $R_{0}=k R^{\prime} \quad(a)$ where R^{\prime} the circuradius of $A^{\prime} B^{\prime} C^{\prime}$.
The reader can as problem prove that

$$
\begin{equation*}
x_{1} x_{2} x_{3} \leq R . R_{0} \tag{4}
\end{equation*}
$$

From (1) ,(a) and (4) follows the Pedoe-Neuberg's inequality.
Proof b
We obtain a second proof directly, without the help of the relation (4) using only the lemma 2 and the pendal triangle of the point M . We will have:

$$
x_{1}: \frac{E F}{a}=x_{2}: \frac{D F}{b}=x_{3}: \frac{F D}{c}=l_{1}
$$

but $E F=x_{1} \sin A=x_{1} \frac{a}{2 R}$, therefore

$$
\begin{equation*}
l_{1}=2 R \tag{5}
\end{equation*}
$$

Also

$$
\begin{equation*}
l_{1}=\frac{a b c}{\left[\frac{P_{1}}{2}+8 F((D E F)]^{\frac{1}{2}}\right.} \tag{6}
\end{equation*}
$$

where $P_{1}=\sum a^{2}\left(-F E^{2}+D E^{2}+D F^{2}\right)$. From (5),(6) we find

$$
\frac{P_{1}}{2}+8 F \cdot(D E F)=4 F^{2}
$$

but $(D E F) \leq \frac{F}{4}$
Therefore $P_{1} \geq 16 F(D E F)$.
The similarity of $D E F$ and $A^{\prime} B^{\prime} C^{\prime \prime}$ leads us to the Pedoe-Neuberg's inequality.

Other remarcable two triangle inequalities

From the well known inequality

$$
a x_{1}^{2}+b x_{2}^{2}+c x_{3}^{2} \geq a b c
$$

see (G.I. 23.13), and from lemma (2) formula (1), follows that:

$$
\begin{equation*}
\frac{a^{\prime 2}}{a}+\frac{b^{\prime 2}}{b}+\frac{c^{\prime 2}}{c} \geq \frac{P}{2}+8 F \cdot F^{\prime} \tag{7}
\end{equation*}
$$

From the inequality

$$
a x_{2} x_{3}+b x_{1} x_{3}+c x_{1} x_{2} \geq a b c
$$

and lemma 2 ,formula (1), follows that:

$$
\begin{equation*}
a^{2} b^{\prime} c^{\prime}+b^{2} a^{\prime} c^{\prime}+c^{2} a^{\prime} b^{\prime} \geq \frac{P}{2}+8 F \cdot F^{\prime} \tag{8}
\end{equation*}
$$

from the well known inequality

$$
a x_{1}+b x_{2}+c x_{3} \geq 4 F
$$

and lemma 2 we take

$$
\begin{equation*}
a^{\prime}+b^{\prime}+c^{\prime} \geq \frac{1}{R}\left[\frac{P}{2}+8 F \cdot F^{\prime}\right]^{\frac{1}{1}} \tag{9}
\end{equation*}
$$

similarly

$$
a+b+c \geq \frac{1}{R^{\prime}}\left[\frac{P}{2}+8 F \cdot F^{\prime}\right]^{\frac{1}{1}}
$$

and finally

$$
\begin{equation*}
4 S \cdot S^{\prime} \geq \frac{1}{R \cdot R^{\prime}}\left[\frac{P}{2}+8 F \cdot F^{\prime}\right] \tag{9a}
\end{equation*}
$$

Two interesting triangle inequalities

We construct equilateral triangles $B C Q, C A R, A B S$ on the sides of the triangle $A B C$. Let M be an interior point in the triangle $A B C$ and we denote $A M=x_{1}, B M=x_{2}, C M=x_{3}$. From the quadralateral $A S M R$ follows:

$$
x_{1} \cdot S R \geq 2(S A M)+2(R A M)
$$

or

$$
x_{1}(b+c) \geq 2(S A M)+2(R A M)
$$

Two other inequalities follows with the same way.So adding we take:

$$
(b+c) x_{1}+(c+a) x_{2}+(a+b) x_{3} \geq 2 F+2(B C Q)+2(A C R)+2(A B S)
$$

or

$$
(b+c) x_{1}+(c+a) x_{2}+(a+b) x_{3} \geq 2 F+\frac{\sqrt{3}}{2}\left(a^{2}+b^{2}+c^{2}\right)
$$

but we know that $a^{2}+b^{2}+c^{2} \geq 4 F \sqrt{3}$, therefore

$$
\begin{equation*}
(b+c) x_{1}+(c+a) x_{2}+(a+b) x_{3} \geq 8 F \tag{10}
\end{equation*}
$$

The area of the triangle $Q R S$ is

$$
(Q R S)=F+\frac{\sqrt{3}}{4}\left(a^{2}+b^{2}+c^{2}\right)
$$

consequantly

$$
(Q R S)=F+\frac{\sqrt{3}}{4}\left(a^{2}+b^{2}+c^{2}\right) \geq 8 F
$$

For the $Q R S$ and the point M holds

$$
S R \cdot Q M+Q R \cdot S M+S Q . R M \geq 4(Q R S)
$$

so we have

$$
\begin{equation*}
\sum(b+c)\left(x_{2}+x_{3}\right) \geq 16 F \tag{11}
\end{equation*}
$$

Where the sum over $a, b, c \quad x_{1}, x_{2}, x_{3}$
The above (10) and (11) inequalities using the lemma 2 respectively give:

$$
\begin{gather*}
\sum(b+c) \frac{a^{\prime}}{a} \geq \frac{2}{R}\left[\frac{P}{2}+8 F \cdot F^{\prime}\right]^{\frac{1}{2}} \tag{12}\\
\sum(b+c)\left[\frac{b^{\prime}}{b}+\frac{c^{\prime}}{c}\right] \geq \frac{4}{R}\left[\frac{P}{2}+8 F . F^{\prime}\right]^{\frac{1}{2}} \tag{13}
\end{gather*}
$$

Leibniz's formula and its applications to two triangle inequalities. For the weighted system $A\left(m_{1}\right), B\left(m_{2}\right), C\left(m_{3}\right)$ Leibniz' s formula asserts:

$$
\begin{equation*}
m_{1} x_{1}^{2}+m_{2} x_{2}^{2}+m_{3} x_{3}^{2}=m G M^{2}+\frac{1}{m}\left(m_{2} m_{3} a^{2}+m_{3} m_{1} b^{2}+m_{1} m_{2} c^{2}\right) \tag{14}
\end{equation*}
$$

where $m=m_{1}+m_{2}+m_{3}$ and G the cendroid of the system, that is:

$$
\overrightarrow{O G}=\frac{m_{1} \overrightarrow{O A}+m_{2} \overrightarrow{O B}+m_{3} \overrightarrow{O C}}{m}
$$

and m_{1}, m_{2}, m_{3} the distances of the point M from the vertices of the triangle $A B C$ respectively. From (14) arises the inequality:

$$
\begin{equation*}
m\left(m_{1} x_{1}^{2}+m_{2} x_{2}^{2}+m_{3} x_{3}^{2}\right) \geq m_{2} m_{3} a^{2}+m_{3} m_{1} b^{2}+m_{1} m_{2} c^{2} \tag{15}
\end{equation*}
$$

The inequality (15) can produce a long number of inequalities according the position of the point G in the triangle $A B C$. we will give some from these inequalities below. We omit as exercises the proofs.

$$
\begin{gather*}
m^{2}\left(R^{2}-O M^{2}\right)=\sum m_{1} m_{2} c^{2} \tag{16}\\
\sum(b+c) x_{1}^{2} \geq \frac{(a+b)(b+c)(c+a)}{4} \tag{17}
\end{gather*}
$$

$$
\begin{gather*}
\sum b^{2} c^{2} x_{1}^{2} \geq a^{2} b^{2} c^{2} \tag{18}\\
\sum a(b+c) x_{1}^{2} \geq \frac{4 S}{3} a b c \tag{19}\\
\sum b c x_{1}^{2} \geq \frac{2 S}{3} a b c \tag{20}\\
\sum\left(b^{2}+c^{2}\right) x_{1}^{2} \geq \frac{2}{3}\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right) \tag{21}\\
\sum \frac{b c}{b+c} x_{1}^{2} \geq \frac{2 a b c}{(a+b)(b+c)(c+a)} \tag{22}\\
\sum \frac{x_{1}^{2}}{b^{2}+c^{2}} \geq \frac{1}{2.5} \tag{23}
\end{gather*}
$$

The application of our lemma (2) to the above formulas will give remarcable ineqalities. From (15) we take

$$
\begin{equation*}
m \sum m_{1}^{2} \frac{a^{\prime 2}}{a^{2}} \geq \frac{P / 2+8 F . F^{\prime}}{a^{2} b^{2} c^{2}} \sum m_{2} m_{3} a^{2} \tag{24}
\end{equation*}
$$

The above formula (24) for $A^{\prime} B^{\prime} C^{\prime}=B A C$ gives

$$
\begin{equation*}
m \sum m_{1} \frac{b^{2}}{a^{2}} \geq\left(\sum \frac{1}{a^{2}}\right) \sum m_{2} m_{3} a^{2} \tag{25}
\end{equation*}
$$

Formula (25) for $m_{1}=m_{2}=m_{3}=1$ asserts

$$
\begin{equation*}
3\left(\frac{b^{2}}{a^{2}}+\frac{c^{2}}{b^{2}}+\frac{a^{2}}{c^{2}}\right) \geq\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right)\left(a^{2}+b^{2}+c^{2}\right) \tag{26}
\end{equation*}
$$

Also from (24) for $m_{1}=m_{2}=m_{3}$ we take

$$
\begin{equation*}
\frac{a^{\prime 2}}{a^{2}}+\frac{b^{\prime 2}}{b^{2}}+\frac{c^{\prime 2}}{c^{2}} \geq \frac{a^{2}+b^{2}+c^{2}}{3}\left[\frac{P / 2+8 F \cdot F^{\prime}}{a^{2} b^{2} c^{2}}\right] \tag{27}
\end{equation*}
$$

From (24),for $m_{1}=\frac{a}{a^{\prime}}, m_{2}=\frac{b}{b^{\prime}}, m_{3}=\frac{c}{c^{\prime}}$, we take

$$
\begin{equation*}
\left(\sum \frac{a}{a^{\prime}}\right)\left(\sum \frac{a^{\prime}}{a}\right) \geq \frac{a a^{\prime}+b b^{\prime}+c c^{\prime}}{a b c \cdot a^{\prime} b^{\prime} c^{\prime}}\left(P / 2+8 F \cdot F^{\prime}\right) \tag{28}
\end{equation*}
$$

From (28) for $a^{\prime}=b, b^{\prime}=c^{\prime} c^{\prime}=a$ we find

$$
\begin{equation*}
\left(a^{2} c+b^{2} a+c^{2} b\right)\left(a c^{2}+b^{2} a+c b^{2}\right) \geq(a b+b c+c a)\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right) \tag{29}
\end{equation*}
$$

From (17) we take :

$$
\begin{equation*}
\sum(b+c) \frac{a^{\prime 2}}{a^{2}} \geq \frac{(a+b)(b+c)(c+a)}{4 a^{2} b^{2} c^{2}}\left(P / 2+8 F . F^{\prime}\right) \tag{30}
\end{equation*}
$$

From (30), setting $a^{\prime}=b^{\prime}=c^{\prime}=1$ we take

$$
\sum \frac{b+c}{a^{2}} \geq \frac{(a+b)(b+c)(c+a)}{4 a^{2} b^{2} c^{2}}\left[\left(a^{2}+b^{2}+c^{2}\right) / 2+2 F \sqrt{3}\right]
$$

or

$$
\begin{equation*}
\sum b^{2} c^{2}(b+c) \geq(a+b)(b+c)(c+a) F \sqrt{3} \tag{31}
\end{equation*}
$$

because of $a^{2}+b^{2}+c^{2} \geq 4 F \sqrt{3}$ From (18) and lemma (2) we take:

$$
\begin{equation*}
\sum\left(\frac{a^{\prime} b c}{a}\right)^{2} \geq P / 2+8 F . F^{\prime} \tag{32}
\end{equation*}
$$

and for $a^{\prime}=b^{\prime}=c^{\prime}=1$

$$
\begin{equation*}
\sum\left(\frac{b c}{a}\right)^{2} \geq \frac{a^{2}+b^{2}+c^{2}}{2}+2 F \sqrt{3} \tag{33}
\end{equation*}
$$

From (19),(20),(21),(22),(23) follows respectively.

$$
\begin{gather*}
\sum \frac{b+c}{a} a^{\prime 2} \geq \frac{4 S}{3 a b c}\left[P / 2+8 F . F^{\prime}\right] \tag{34}\\
\sum \frac{b c}{a^{2}} a^{\prime 2} \geq \frac{2 S}{3 a b c}\left(P / 2+8 F . F^{\prime}\right) \tag{35}\\
\sum \frac{b^{2}+c^{2}}{a^{2}} a^{\prime 2} \geq \frac{2}{3}\left[\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right]\left[P / 2+8 F . F^{\prime}\right] \tag{36}\\
\sum \frac{b c}{b+c} \frac{a^{\prime 2}}{a^{2}} \geq \frac{2\left[P / 2+8 F . F^{\prime}\right]}{a b c(a+b)(b+c)(c+a)} \tag{37}\\
\sum \frac{a^{\prime 2}}{a^{2}\left(b^{2}+c^{2}\right)} \geq \frac{P / 2+8 F . F^{\prime}}{a^{2} b^{2} c^{2}} \tag{38}
\end{gather*}
$$

The above inequalities give very interesting results for the special cases of $A^{\prime} B^{\prime} C^{\prime}=\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$. Here we denote by $a^{\prime}, b^{\prime}, c^{\prime}$ the sides of the $A B C$. Taking $A^{\prime} B^{\prime} C^{\prime}=(1,1,1)$ or $A^{\prime} B^{\prime} C^{\prime}=(b, c, a)$, or $A^{\prime} B^{\prime} C^{\prime}=(a, b, c)$, we find a class
of very important inequalities.
We assume now that M_{1} and M_{2} are defined so that-

$$
\begin{aligned}
& A M_{1}: \frac{b^{\prime}}{a}=B M_{1}: \frac{c^{\prime}}{b}=C M_{1}: \frac{a^{\prime}}{c}=k_{1} \\
& A M_{2}: \frac{c^{\prime}}{a}=B M_{2}: \frac{a^{\prime}}{b}=C M_{2}: \frac{b^{\prime}}{c}=k_{2}
\end{aligned}
$$

where $a^{\prime}, b^{\prime}, c^{\prime}$ the sides of the triangle $A^{\prime} B^{\prime} C^{\prime}$. According lemma 2 from the inequality (2) follows.

$$
\begin{equation*}
\sum b c b^{\prime} c^{\prime} \geq\left[P_{1} / 2+8 F F^{\prime}\right]^{1 / 2}\left[P_{2} / 2+8 F F^{\prime}\right]^{1 / 2} \tag{39}
\end{equation*}
$$

where

$$
P_{1}=\sum a^{2}\left(-b^{\prime 2}+c^{\prime 2}+a^{\prime 2}\right), \quad P_{2}=\sum a^{2}\left(-c^{\prime 2}+b^{\prime 2}+a^{\prime 2}\right)
$$

Let $A B C, A^{\prime} B^{\prime} C^{\prime}$ two triangles and M^{\prime} a point. We denote by $A^{\prime} M^{\prime}=$ $x_{1}^{\prime}, B^{\prime} M^{\prime}=x_{2}^{\prime}, C^{\prime} M^{\prime}=x_{3}^{\prime}, a_{1}=a^{\prime} x_{1}^{\prime}, b_{1}=b^{\prime} x_{2}^{\prime}, c_{1}=c^{\prime} x_{3}^{\prime}, A_{1} B_{1} C_{1}$ the triangle with sides $a_{1}, b_{1}, c_{1} F_{1}$ its area and $P_{1}=\sum a^{2}\left(-a_{1}^{2}+b_{1}^{2}+c_{1}^{2}\right)$
According lemma 1 we can find the point M so that

$$
\begin{equation*}
A M: \frac{a_{1}}{a}=B M: \frac{b_{1}}{b}=C M: \frac{c_{1}}{c}=k_{1} \tag{40}
\end{equation*}
$$

We know that is:

$$
a \cdot A M+b \cdot B M+c \cdot C M \geq 4 F
$$

Hence from lemma 2 and the above inequality we take

$$
\begin{equation*}
a^{\prime} x_{1} x_{1}^{\prime}+b^{\prime} x_{2}^{\prime} x_{2}+c^{\prime} x_{3}^{\prime} x_{3} \geq\left[P_{1} / 2+8 F F^{\prime}\right]^{2} \tag{41}
\end{equation*}
$$

From

$$
a A M^{2}+b B M^{2}+c C M^{2} \geq a b c
$$

and (40) we find:

$$
\begin{equation*}
\sum b c a^{\prime 2} x_{1}^{\prime 2} \geq P_{1} / 2+8 F F_{1} \tag{42}
\end{equation*}
$$

We see that, the main source of the above 42 inequalities are the lemma

1 and the lemma 2. We found aout and some other inequalities working by similar tehnics, but we think, that the possibilities are clear, so we stop here.

Bibliographical Notes

The recent progress of the Geometrical Inequalities started from 1950 with some excelent Mathematiciens as O.Bottema, D. Mitrinovic, M. Klamkin and others. At that time published the famous book Geometric Inequalities by O.Bottema,R.Z. Djordjevic,R.R. Janic, D.S. Mitrinovic,P.M. Vasic. The book is refered in Bibliography as G.I (for us G.I. 1). Twenty years later a second very valuable book published the Recent Advances in Geometrc Inequalities by D.S. Mitrinovic, J.E. Pecaric and V. Volonec. We will denote it G.I. 2
The most important part of the Mathematical activity in that part of Mathematics has been published in two journals the Crux Mathematicorum from The Canadian Mathematical Society and the American Mathematical Monthly from the Mathematical Association of America.

