
Plane intersections of ellipsoid

G.Tsintsifas

Theorem.
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Q(0) = (M/M.~r = 0) are the perpendicular n- planes to ~r0 at r and 0
from the center O of (c). We denote by p1, p2, ...pn the directional cosines of
~r0, that is ~r0 = ~r

r
= (p1, p2, ....pn) and the intersections c(0) = Q(0) ∩ (c),

c(r) = Q(r) ∩ (c). Then it holds:
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Proof
The equation of (c) is refered to the Cartesian orthogonal system of axes
Ox1, Ox2, ...Oxn. We will find the projection of c(r) to the hyperplane
e = Ox1x2....xn−1.
The equation of Q(r) is:

Q(r) : p1x1 + p1x2 + ...+ pnxn = r (1)
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where ce(r) the projection of c(r) to the hyperplane e : Ox1x2....xn−1.
from (2) we take:
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Let φ(x, x) the bilinear form of F (x) and L(x) the linear part of F (x), that
is:

F (x) = φ(x, x) + L(x)

We denote by d the characteristic determinant of φ(x, x) and D(r) the char-
acteristic determinant of F (x), D(0) the characteristic determinant of F (x)
for r = 0.
The calculation of D(r) (quite complicate) gives:

D(r) = −
∑n

1 a
2
i p

2
i − r2

a21a
2
2....a

2
np

2
n

(3)

and

D(0) = −
∑n

1 a
2
i p

2
i

a21a
2
2....a

2
np

2
n

(4)

We now suppose that the characteristic roots of the bilinear form φ(x, x) are:
λ1, λ2, ....λn−1, so the equation of ce(0) and ce(r) are:
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That is
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