Plane intersections of ellipsoid

G.Tsintsifas

Theorem.

Let (c): $\sum_{i=1}^{n} \frac{x_{i}^{2}}{a_{i}^{2}}=1$ be an ellipsoid in E^{n} and $Q(r)=\left(M / M \cdot \vec{r}_{0}=r\right)$, $Q(0)=(M / M \cdot \vec{r}=0)$ are the perpendicular n- planes to \vec{r}_{0} at r and 0 from the center O of (c). We denote by $p_{1}, p_{2}, \ldots p_{n}$ the directional cosines of \vec{r}_{0}, that is $\vec{r}_{0}=\frac{\vec{r}}{r}=\left(p_{1}, p_{2}, \ldots p_{n}\right)$ and the intersections $c(0)=Q(0) \cap(c)$, $c(r)=Q(r) \cap(c)$. Then it holds:

$$
\frac{\text { area } c(r)}{\text { area } c(0)}=\frac{\sum_{i=1}^{n} a_{i}^{2} p_{i}^{2}-r^{2}}{\sum_{i=1}^{n} a_{i}^{2} p_{i}^{2}}
$$

Proof

The equation of (c) is refered to the Cartesian orthogonal system of axes $O x_{1}, O x_{2}, \ldots O x_{n}$. We will find the projection of $c(r)$ to the hyperplane $e=O x_{1} x_{2} \ldots x_{n-1}$.
The equation of $Q(r)$ is:

$$
\begin{equation*}
Q(r): \quad p_{1} x_{1}+p_{1} x_{2}+\ldots+p_{n} x_{n}=r \tag{1}
\end{equation*}
$$

So the projection we will be

$$
\begin{equation*}
c_{e}(r): \quad \sum_{i=1}^{n-1} \frac{x_{i}^{2}}{a_{i}^{2}}+\frac{\left(r-\sum_{1}^{n-1} p_{i} x_{i}\right)^{2}}{a_{n}^{2} p_{n}^{2}}=1 \tag{2}
\end{equation*}
$$

where $c_{e}(r)$ the projection of $c(r)$ to the hyperplane $e: O x_{1} x_{2} \ldots x_{n-1}$. from (2) we take:
$c_{e}(r)=F(x)=\sum_{i}^{n-1}\left(\frac{1}{a_{i}^{2}}+\frac{p_{i}^{2}}{a_{n}^{2} p_{n}^{2}}\right) x_{i}^{2}+2 \sum_{i>j}^{1, n-1} \frac{p_{i} p_{j} x_{i} x_{j}}{a_{n}^{2} p_{n}^{2}}+2 \frac{r}{a_{n}^{2} p_{n}^{2}} \sum_{i}^{n-1} p_{i} x_{i}+\frac{r^{2}}{a_{n}^{2} p_{n}^{2}}-1=0$

Let $\phi(x, x)$ the bilinear form of $F(x)$ and $L(x)$ the linear part of $F(x)$, that is:

$$
F(x)=\phi(x, x)+L(x)
$$

We denote by d the characteristic determinant of $\phi(x, x)$ and $D(r)$ the characteristic determinant of $F(x), D(0)$ the characteristic determinant of $F(x)$ for $r=0$.
The calculation of $D(r)$ (quite complicate) gives:

$$
\begin{equation*}
D(r)=-\frac{\sum_{1}^{n} a_{i}^{2} p_{i}^{2}-r^{2}}{a_{1}^{2} a_{2}^{2} \ldots . a_{n}^{2} p_{n}^{2}} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
D(0)=-\frac{\sum_{1}^{n} a_{i}^{2} p_{i}^{2}}{a_{1}^{2} a_{2}^{2} \ldots . a_{n}^{2} p_{n}^{2}} \tag{4}
\end{equation*}
$$

We now suppose that the characteristic roots of the bilinear form $\phi(x, x)$ are: $\lambda_{1}, \lambda_{2}, \ldots . \lambda_{n-1}$, so the equation of $c_{e}(0)$ and $c_{e}(r)$ are:

$$
\begin{aligned}
& c_{e}(0): \lambda_{1} x_{1}^{\prime 2}+\lambda_{2} x_{2}^{\prime 2}+\ldots+\lambda_{n-1} x_{n-1}^{\prime 2}+\frac{D(0)}{d}=0 \\
& c_{e}(0): \lambda_{1} x_{1}^{\prime 2}+\lambda_{2} x_{2}^{\prime 2}+\ldots+\lambda_{n-1} x_{n-1}^{\prime 2}+\frac{D(r)}{d}=0
\end{aligned}
$$

Obviously

$$
\frac{\text { area }}{\text { area }} c_{e}(r), c_{e}(0)=\frac{\text { area } c(r)}{\text { area } c(0)},
$$

but

$$
\frac{\text { area }}{\text { area }} c_{e}(r)(0)=\frac{D(r)}{D(0)}=\frac{\sum_{1}^{n} a_{i}^{2} p_{i}^{2}-r^{2}}{\sum_{1}^{n} a_{i}^{2}}
$$

That is

$$
\frac{\text { area } c(r)}{\text { area } c(0)}=\frac{\sum_{1}^{n} a_{i}^{2} p_{i}^{2}-r^{2}}{\sum_{1}^{n} a_{i}^{2}}
$$

