A characterization of a centrosymmetric convex figure.

G. A. Tsintsifas

The centrosymmetric figure plays an importand role in convex Geometry. In this paper we discover an interesting theorem about the centrosymmetric figures in the plan.

Let (c) be a convex figure of the plane. A diametrical chord $A B$ of (c) parallel to the dierection of the vector \vec{v} is the maximal chord $A B$ of (c) parallel to the vector \vec{v}.
Theorem
If every diametrical chord of a convex figure (c) bissects the area of (c), then (c) must be a centrosymmetric figure.

Proof
Let $X X^{\prime}$ be a diameter of (c) and (O) the middle point of $X X^{\prime}$. We choose a Kartesian system of axis $x O y$, so that $O x=O X$.

We denote $K L$ a diametrical chord of (c) and $p(\theta)$ the support function of (c) relative to O.
It is well known that the support lines at the points K, L are perallel. Let $O A, O B$ the perpendiculars to the support lines e and h at the points K and L respectively.
We denote $\angle X O A Q=a$, therefore:

$$
p(a)=O A, \quad p(a+\pi)=O B
$$

Using elementary Geometry we calculate the area of the triangle $K O L$. That is:

$$
\begin{equation*}
(K O L)=\frac{O A \cdot L B-A K . O B}{2} \tag{1}
\end{equation*}
$$

Taking in our mind that

$$
O A=p(a)
$$

$$
\begin{gathered}
O B=p(a+\pi) \\
A K=\dot{p}(a) \\
B L=\dot{p}(a+\pi)
\end{gathered}
$$

from (1) we find:

$$
\begin{equation*}
(K O L)=\frac{p(a) \cdot \dot{p}(a+\pi)-\dot{p}(a) \cdot p(a+\pi)}{2} \tag{2}
\end{equation*}
$$

The diametrical chord bissects (c). So we will have:
Area $\left(\right.$ curvedKOLXK) + Area $($ triangleKOL $)=$ Area $\left(\right.$ curved $\left.K X^{\prime} L K\right)$ or, using the formulas of the convex differential we have

$$
\begin{equation*}
\frac{1}{2} \int_{0}^{a} p(\theta) \rho(\theta) d \theta+\text { areatriagle }(K O L)=\frac{1}{2} \int_{0}^{a} p(\theta+\pi) \rho(\theta+\pi) d \theta \tag{3}
\end{equation*}
$$

where ρ is the radius of curvature.
From (2),(3) follows

$$
\begin{equation*}
\frac{1}{2} \int_{0}^{a} p(\theta) \rho(\theta) d \theta+\frac{p(a) \dot{p}(a+\pi)-\dot{p}(a) p(a+\pi}{2}=\frac{1}{2} \int_{0}^{a} p(\theta+\pi) \rho(\theta+\pi) d \theta \tag{4}
\end{equation*}
$$

but

$$
\begin{equation*}
p(a) \dot{p}(a+\pi)-\dot{p}(a) p(a+\pi)=\int_{0}^{a}[p(\theta) \ddot{p}(\theta+\pi)-\ddot{p}(\theta) p(\theta+\pi)] d \theta \tag{5}
\end{equation*}
$$

From (4),(5) follows
$\frac{1}{2} \int_{0}^{a} p(\theta) \rho(\theta) d \theta+\frac{1}{2} \int_{0}^{a}[p(\theta) \ddot{p}(\theta+\pi)-\ddot{p}(\theta) p(\theta+\pi)] d \theta=\frac{1}{2} \int_{0}^{a} p(\theta+\pi) \rho(\theta+\pi) d \theta$
This relation (6) holds for every a, so we will have

$$
\begin{equation*}
p(\theta)[p(\theta)+\ddot{(} \theta)]+p(\theta) \ddot{p}(\theta+\pi)-p(\theta+\pi) \ddot{p}(\theta)=p(\theta+\pi)[p(\theta+\pi)+\ddot{p}(\theta+\pi)] . \tag{7}
\end{equation*}
$$

It is known that

$$
p(\theta)+\ddot{p}(\theta)=\rho(\theta)
$$

also

$$
p(\theta)+p(\theta+\pi)=B(\theta)
$$

so

$$
\ddot{p}(\theta)+\ddot{p}(\theta+\pi)=\ddot{B}(\theta)
$$

Finally we take

$$
\begin{equation*}
[p(\theta)-p(\theta+\pi)][B(\theta)-\ddot{B}(\theta)]=0 \tag{8}
\end{equation*}
$$

We can easily see that $B(\theta) \neq \ddot{B}(\theta)$. Because in the opposite case, we will have

$$
\int_{0}^{2 \pi} \ddot{B}(\theta) d \theta=\int_{0}^{2 \pi} B(\theta) d \theta
$$

but

$$
\int_{0}^{2 \pi} \ddot{B}(\theta) d \theta=\dot{B}(2 \pi)-\dot{B}(0)
$$

Also $\int_{0}^{2 \pi} B(\theta) d \theta=2 L$ where L the perimeter of (c). Therefore from (8) follows that:

$$
p(\theta)=p(\theta+\pi)
$$

that is according [1], 14-61, (c) must be a centrosymmetric convex figure.
References

1. T. Bonnesen and W. Fenchel, Theory of Convex Bodies, BCS Associates.
2. P. M. Gruber, Convex and Discrete4 Geometry,Springer
3. Rolf Schneider, Convex Bodies: The Brunn-Minkowski Theory,Cambridge
