A characterization of a centrosymmetric convex figure.

G. A. Tsintsifas

The centrosymmetric figure plays an importand role in convex Geometry. In this paper we discover an interesting theorem about the centrosymmetric figures in the plan.

Let (c) be a convex figure of the plane. A diametrical chord AB of (c) parallel to the dierection of the vector \vec{v} is the maximal chord AB of (c) parallel to the vector \vec{v} .

Theorem

If every diametrical chord of a convex figure (c) bissects the area of (c), then (c) must be a centrosymmetric figure.

Proof

Let XX' be a diameter of (c) and (O) the middle point of XX'. We choose a Kartesian system of axis xOy, so that Ox = OX.

We denote KL a diametrical chord of (c) and $p(\theta)$ the support function of (c) relative to O.

It is well known that the support lines at the points K, L are perallel. Let OA, OB the perpendiculars to the support lines e and h at the points K and L respectively.

We denote $\angle XOAQ = a$, therefore:

$$p(a) = OA, \qquad p(a+\pi) = OB$$

Using elementary Geometry we calculate the area of the triangle KOL. That is:

$$(KOL) = \frac{OA.LB - AK.OB}{2} \tag{1}$$

Taking in our mind that

OA = p(a)

$$OB = p(a + \pi)$$

 $AK = \dot{p}(a)$
 $BL = \dot{p}(a + \pi)$

from (1) we find:

$$(KOL) = \frac{p(a).\dot{p}(a+\pi) - \dot{p}(a).p(a+\pi)}{2}$$
(2)

The diametrical chord bissects (c). So we will have: Area(curvedKOLXK) + Area(triangleKOL) = Area(curvedKX'LK)or, using the formulas of the convex differential we have

$$\frac{1}{2}\int_{0}^{a}p(\theta)\rho(\theta)d\theta + areatriagle(KOL) = \frac{1}{2}\int_{0}^{a}p(\theta+\pi)\rho(\theta+\pi)d\theta \qquad (3)$$

where ρ is the radius of curvature. From (2),(3) follows

$$\frac{1}{2} \int_0^a p(\theta) \rho(\theta) d\theta + \frac{p(a)\dot{p}(a+\pi) - \dot{p}(a)p(a+\pi)}{2} = \frac{1}{2} \int_0^a p(\theta+\pi)\rho(\theta+\pi) d\theta \quad (4)$$

but

$$p(a)\dot{p}(a+\pi) - \dot{p}(a)p(a+\pi) = \int_0^a \left[p(\theta)\ddot{p}(\theta+\pi) - \ddot{p}(\theta)p(\theta+\pi) \right] d\theta \qquad (5)$$

From (4),(5) follows

$$\frac{1}{2}\int_{0}^{a}p(\theta)\rho(\theta)d\theta + \frac{1}{2}\int_{0}^{a}\left[p(\theta)\ddot{p}(\theta+\pi) - \ddot{p}(\theta)p(\theta+\pi)\right]d\theta = \frac{1}{2}\int_{0}^{a}p(\theta+\pi)\rho(\theta+\pi)d\theta$$
(6)

This relation (6) holds for every a, so we will have

$$p(\theta) \Big[p(\theta) + \ddot{(}\theta) \Big] + p(\theta) \ddot{p}(\theta + \pi) - p(\theta + \pi) \ddot{p}(\theta) = p(\theta + \pi) \Big[p(\theta + \pi) + \ddot{p}(\theta + \pi) \Big].$$
(7)

It is known that

$$p(\theta) + \ddot{p}(\theta) = \rho(\theta)$$

also

$$p(\theta) + p(\theta + \pi) = B(\theta)$$

 \mathbf{SO}

$$\ddot{p}(\theta) + \ddot{p}(\theta + \pi) = \ddot{B}(\theta)$$

Finally we take

$$\left[p(\theta) - p(\theta + \pi)\right] \left[B(\theta) - \ddot{B}(\theta)\right] = 0$$
(8)

We can easily see that $B(\theta) \neq \ddot{B}(\theta)$. Because in the opposite case, we will have

$$\int_0^{2\pi} \ddot{B}(\theta) d\theta = \int_0^{2\pi} B(\theta) d\theta$$

but

$$\int_0^{2\pi} \ddot{B}(\theta) d\theta = \dot{B}(2\pi) - \dot{B}(0)$$

Also $\int_0^{2\pi} B(\theta) d\theta = 2L$ where L the perimeter of (c). Therefore from (8) follows that:

$$p(\theta) = p(\theta + \pi)$$

that is according [1], 14-61, (c) must be a centrosymmetric convex figure. **References**

- 1. T. Bonnesen and W. Fenchel, Theory of Convex Bodies, BCS Associates.
- 2. P. M. Gruber, Convex and Discrete4 Geometry, Springer
- 3. Rolf Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge