The vector relative to simplex. John's Matrix.

G. A. Tsintsifas
Thessaloniki, Greece

The idea of the vector relative to simplex seems to simplify some theorems and propositions for the Geometry of the simplex.
Let $S=A_{1} A_{2} \ldots A_{n+1}$ be a simplex in E^{n}. It is well known that there exists real positive numbers $c_{1}, c_{2}, \ldots c_{n+1}$ so that:

$$
\sum_{i=1}^{n+1} c_{i} u_{i}=0
$$

where u_{i} the unit vectors perpendiculars to the facets of s and directed to the exterior of S.
We suppose that a is a vector in E^{n}. We define the vector $D a$ relative to a simplex S as follows:

$$
\begin{equation*}
D a=\sum_{i=1}^{n+1} c_{i}\left(u_{i}, a\right) u_{i} \tag{1}
\end{equation*}
$$

The follwing properties can be easily proved.

1. $\forall \lambda \in \Re: ~ \lambda D a=D(\lambda a)$
2. $D(a+b)=D a+D b$
3. $a=0 \leftrightarrow D a=0$
4. $(D a, b)=(a, D b)=(D b, a)$
5. $\left(D a, b_{1}\right)+\left(D a, b_{2}\right)=\left(D a, b_{1}+b_{2}\right)$
6. $(D a, D b)=\sum_{i, j}^{1, n+1} c_{i} c_{j}\left(u_{i}, a\right)\left(u_{j}, b\right)\left(u_{i}, u_{j}\right)$

John's Matrix

Let $O . x_{1} x_{2} \ldots x_{n}$ be the Cartesian orthogonal system with unit vectors $e_{1}, e_{2}, \ldots e_{n}$. The operator $A=\sum_{i=1}^{n+1} c_{i} u_{i} \otimes u_{i}$ where :
is the well known John's matrix.
Introducing in A the notation of a vector relative to simplex we will have:

$$
A=\left[\begin{array}{cccc}
\left(D e_{1}, e_{1}\right) & \left(D e_{1}, e_{2}\right) & \cdots & \left(D e_{1}, e_{n}\right) \tag{3}\\
\left(D e_{2}, e_{1}\right) & \left(D e_{2}, e_{2}\right) & \cdots & \left(D e_{2}, e_{n}\right) \\
\cdots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots & \ldots \ldots \ldots \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots & \ldots \ldots & \ldots \ldots \ldots \\
\left(D e_{n}, e_{1}\right) & \left(D e_{n}, e_{2}\right) & \cdots & \left(D e_{n}, e_{n}\right)
\end{array}\right]
$$

Let now the vector $v=\sum_{i}^{n} x_{i} e_{i}$ and $|v|=1$, then we will have:

$$
\begin{equation*}
(D v, v)=\sum_{i, j}^{1, n} x_{i} x_{j}\left(D e_{i}, e_{j}\right) \tag{4}
\end{equation*}
$$

Therefore we see that

$$
\begin{equation*}
(D v, v)=\sum_{i=1}^{n+1} c_{i}\left(u_{i}, v\right)^{2}=\sum_{i, j}^{1, n} x_{i} x_{j}\left(D e_{i}, e_{j}\right) \tag{3a}
\end{equation*}
$$

setting also $a_{i j}=\left(D e_{i}, e_{j}\right)$ and denoting $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$ the characteristic roots of the matrix $\left[a_{i j}\right]$, we take:

$$
\begin{array}{ll}
\max (D v, v)=\lambda_{1} & 3(b) \\
\min (D v, v)=\lambda_{n} . & 3(c)
\end{array}
$$

Let now $b_{i j}=\left(D e_{i}, D e_{j}\right)$. We can see that:

$$
b_{i j}=\sum_{k=1}^{n} a_{i k} a_{j k},
$$

that is $B=\left[b_{i j}\right]=A \cdot A^{T}=A^{2}$.
Hence the roots of B are $\lambda_{1}^{2}, \lambda_{2}^{2}, \ldots \lambda_{n}^{2}$.
Conclusion:

$$
\lambda_{1}^{2} \geq(D v, D v) \geq \lambda_{n}^{2}
$$

The regular Simplex S_{0}

The following propositions are easy .

1. $\left(u_{i}, u_{j}\right)=-\frac{1}{n}$ for $i \neq j, \quad c_{i}=\frac{n}{n+1}$
2. For the Cartesian system of coordinates $e_{1}, e_{2}, . . \quad . . e_{n}$, we set $e_{i}=l_{1} u_{1}+$ $l_{2} u_{2}+\ldots+l_{n+1} u_{n+1}$ where the l_{i} are real numbers, the barycentric coordinates of e_{i}. that is $l_{1}+l_{2}+\ldots l_{n+1}=1$
We easily find that

$$
\begin{equation*}
l_{k}=\frac{1+n\left(e_{i}+u_{k}\right)}{n+1} \tag{5}
\end{equation*}
$$

Also from $e_{i}^{2}=1$ that is $\left(\sum l_{i}\right)^{2}=1$, we take that $\sum l_{i}^{2}=1$ Squaring (4) and summing we take

$$
\begin{equation*}
\sum_{k=1}^{n+1}\left(u_{k}, e_{i}\right)^{2}=\frac{n+1}{n} \tag{6}
\end{equation*}
$$

Similarly working with $e_{j}=l_{1}^{\prime} u_{1}+\ldots . . l_{n+1}^{\prime} u_{n+1}$ we find $\sum l_{i} l_{i}^{\prime}=\frac{1}{n+1}$ and then

$$
\begin{equation*}
\sum_{k=1}^{n+1}\left(e_{i}, u_{k}\right)\left(e_{j}, u_{k}\right)=\frac{(n+1)^{2} \sum l_{i} l_{i}^{\prime}-(n+1) \sum l_{i}^{\prime}-(n+1) \sum l_{i}+n+1}{n^{2}}=0 \tag{7}
\end{equation*}
$$

3. The John's Matrix for the regular simplex is $A_{0}=I_{n}$. This follows from (2) and (6),(7).

Prblem

The $B\left(v_{0}\right)^{n-1}$ sphere inscribed in a \mathbf{n}-simplex
Let p_{v} be a plane of direction v and S is a n-simplex in E^{n}. We denote by $S(v)=T\left(p_{v}\right) \cap S$. The inscribed sphere in $S(v)$ is $B(v)^{n-1}$. We suppose that $B_{0}(v)^{n-1}=\operatorname{Max.} B(v)^{n-1}$ for every $S(v)$. We call the inscribed sphere $B\left(v_{0}\right)^{n-1}$ in the n- simplex the Min. $B_{0}(v)^{n-1}$ for all the vectors $v_{0} \in E^{n}$
To understood the problem it is better to see it in the E^{3}. Suppose that $A B C D$ is a regular tetrahedron and p a plane of direction p. The translation of p intersects from $A B C D$ a triangle T or quadrilateral Q . We consider the incircle C in T or Q . The incircle C a has for some position $\operatorname{MaxC}=C_{0}$. We are looking for the Min of C_{0} for every direction of p in E^{3}.Another formulation of the same circle is the following: We are looking for the max. circle who can fit inside of a tetrahedron in every direction. As we have prove this circle for the regular tetrahedron is the inscribed circle, of radius $\sqrt{3} / \sqrt{2}$ in the in the square with vertices the four middlepoints, of the four opposite
edges of the regular tetrahedron with radius equal to one. Point out that in this tetrahedron the inradius of a face is $\sqrt{2}$.
Let $S=A_{1} A_{2} \ldots A_{n+1}$ a n-simplex in E^{n} and p_{v} a $n-1$ plane. We set

$$
S(v)=p_{v} \cap S
$$

(K, r) is the inscribed B^{n-1} sphere in $S(v)$. Our first problem is to determine the Max. r for all the tranlates of p_{v}, with direction v.
We introduce a Cartesian Coordinates system $O e_{1} e_{2} \ldots . e_{n}$ where $e_{n}=v$ that is e_{n} normal to p_{v}. We asumme $u_{1}, u_{2}, \ldots u_{n+1}$ the unit vectors perpendicular to the faces. As we know wecan find the positive real numbers $c_{1}, c_{2}, \ldots c_{n+1}$ so that:

$$
\begin{gathered}
\sum_{i=1}^{n+1} c_{i} u_{i}=0, \\
A=\sum_{n=1}^{n+1} c_{i} u_{i} \otimes u_{i} \neq I_{n}
\end{gathered}
$$

We denote by y the vector of position of the center K of the inscribed sphere B^{n-1} in $S(v)$ and r the radius. For every point $x \in(K, r) /|x-y|=r$ holds:

$$
\begin{equation*}
\sum_{j=1}^{n-1}\left(x-y, e_{j}\right)^{2}=r^{2} \tag{8}
\end{equation*}
$$

The point

$$
\begin{equation*}
x_{i}=y+\sum_{j=1}^{n-1} r\left(u_{i}, e_{j}\right) e_{j} \cdot\left[\sum_{j=1}^{n-1}\left(u_{i}, e_{j}\right)^{2}\right]^{-\frac{1}{2}} \tag{9}
\end{equation*}
$$

is on the sphere (K, r) and on a facet of S. See fig 1 .

fig 1

The vector u_{i} is projected to the (n-1)-plane p_{v} to the vector

$$
\begin{equation*}
P_{n-1} u_{i}=\sum_{j=1}^{n-1}\left(u_{i}, e_{j}\right) e_{j} \tag{10}
\end{equation*}
$$

We denote by P_{k} the projection to the k- plane.We work only for $\mathrm{k}=\mathrm{n}-1$ so for smplicity the n-1 projection we will denote by P.See fig 2

From (9),(10) we have:

$$
\begin{equation*}
x_{i}=y+\frac{P u_{i}}{\left|P u_{i}\right|} \tag{11}
\end{equation*}
$$

that is because the point x_{i} lies to the sphere (K, r) and to a facet of the simplex S. Also for the non exterior points x of the simple S holds

$$
\left(x, u_{i}\right) \leq 1
$$

The equality for the points of (K, r) on the facets of the simplex. Hence,

$$
\left(y+r \frac{P u_{i}}{\left|P u_{i}\right|}, u_{i}\right) \leq 1
$$

and for the points x_{i} of (k, r) on the facets holds:

$$
\begin{equation*}
\left(y, u_{i}\right)+r \frac{\left(P u_{i}, u_{i}\right)}{\left|P u_{i}\right|}=1 \tag{12}
\end{equation*}
$$

or

$$
\left(y, u_{i}\right)+r\left|P u_{i}\right|=1
$$

for $i=1,2,3 \ldots n+1$, so we have

$$
y \cdot\left(\sum_{i=1}^{n+1} c_{i} u_{i}\right)+r \sum_{i=1}^{n+1} c_{i}\left|P u_{i}\right|=\sum_{i=1}^{n+1} c_{i}
$$

We suppose that $e_{n}=v$ is at the moment constand, we see that the Max. $r=$ r_{1}, will be:

$$
\begin{equation*}
r_{1}=\frac{\sum_{i=1}^{n+1} c_{i}}{\sum_{i=1}^{n+1} c_{i}\left|P u_{i}\right|} \tag{13}
\end{equation*}
$$

The last part of our problem now is to find the $r_{0}=$ Min. r_{1}, for every vector $v \in E^{3}$
We see that

$$
\sum_{j=1}^{n}\left(u_{i} e_{j}\right)=\left(u_{i}\right)^{2}=1
$$

Or

$$
\begin{equation*}
\left|P u_{i}\right|^{2}+\left(u_{i}, v\right)^{2}=1 \tag{14}
\end{equation*}
$$

for $e_{n}=v$ and

$$
c_{i}^{2}\left|P u_{i}\right|^{2}+c_{i}^{2}\left(u_{i}, v\right)^{2}=c_{i}^{2}
$$

Therefore

$$
\begin{equation*}
\sum_{i=1}^{n+1} c_{i}^{2}\left|P u_{i}\right|^{2}=\sum_{i=1}^{n+1}\left[c_{i}^{2}-c_{i}^{2}\left(u_{i} v\right)^{2}\right] \tag{15}
\end{equation*}
$$

lFrom Cauchy-Schwarz inequality follows that

$$
\begin{equation*}
\left(\sum_{i=1}^{n+1} c_{i}\right)\left[\sum_{i=1}^{n+1} c_{i}\left|P u_{i}\right|^{2}\right] \geq\left[\sum_{i=1}^{n+1} c_{i}\left|P u_{i}\right|\right]^{2} \tag{16}
\end{equation*}
$$

From (14) and (16) follows that

$$
\left(\sum_{i=1}^{n+1} c_{i}\right)\left[\sum_{i=1}^{n+1} c_{i}-\sum_{i=1}^{n+1} c_{i}\left(u_{i} v\right)^{2}\right] \geq\left[\sum_{i=1}^{n+1} c_{i}\left|P u_{i}\right|\right]^{2}
$$

Hence from the above, (3c) and (16) follows that $r_{0}=$ Min. r_{1} where

$$
\begin{equation*}
r_{1}=\frac{\sum_{i=2}^{n+1} c_{i}}{\sum_{i=1}^{n+1} c_{i}\left|P u_{i}\right|} \geq \frac{\sum_{i=1}^{n+1} c_{i}}{\sqrt{\sum_{i=1}^{n+1} c_{i}\left(\sum_{i=1}^{n+1} c_{i}-\lambda_{n}\right)}}=\frac{\sqrt{\sum_{i=1}^{n+1} c_{i}}}{\sqrt{\sum_{i=1}^{n+1} c_{i}-\lambda_{n}}} \tag{17}
\end{equation*}
$$

Where λ_{n} the min. charecteristique root of the John's Matrx, see(3c)
The equality for $\left|c_{i}(u, i v)\right|=\left|c_{j}(u, j v)\right|$. That is possible for $n=$ odd. For $n=$ even in the above formula is true only the inequality. For the equilateral triangle the equality is true for $\left|\left(u_{1}, v\right)\right|=\left|\left(u_{2}, v\right)\right|=1 / 2$ and $\left|\left(u_{3}, v\right)\right|=1$.

1.John's theorem for the simplex.

The Eucledean ball is the ellipsoid of maximum volume contained in the simplex $S=A_{1} A_{2} \ldots A_{n+1}$ if and only if:
(a). $\sum_{1}^{n+1} c_{i} u_{i}=0$
(b). $\sum_{1}^{n+1} c_{i} u_{i} \otimes u_{i}=I_{n}$ the identity matrix.

The u_{i} and c_{i} as already defined.
2.For the inscribed sphere (I, r) in the simplex S holds:

$$
\begin{equation*}
r \leq \frac{\sum_{i=1}^{n+1} c_{i}}{n \lambda_{n}} \tag{18}
\end{equation*}
$$

where , $\lambda_{1}, \lambda_{2}, \ldots . \lambda_{n-1} \lambda_{n}$ the charectiristic roots of the John's matrics Proof

Let $S=A_{1} A_{2} \ldots . A_{n+1}$ simplex in E^{n} and (I, r) is the inscribed sphere, $\lambda_{1} \geq$, $\lambda_{2} \geq, \lambda_{3} \ldots . \lambda_{n-1} \geq \lambda_{n}$ the charectiristic roots and $O . e_{1} e_{2} \ldots . . e_{n}$ one orthonormal system of reference and y the vector of I. we will have

$$
\begin{equation*}
\sum_{j}^{1, n}\left(x-y, e_{j}\right)^{2} \leq 1 \tag{19}
\end{equation*}
$$

for every point $x \in(I, r)$
As usually we denote by $u_{1}, u_{2}, \ldots u_{n+1}$ the unit vectors normal to the edges directed to the outside of S. the point

$$
\begin{equation*}
x_{i}=y+\frac{r \cdot \sum_{j=1}^{n}\left(u_{i}, e_{j}\right) e_{j}}{\left[\sum_{n=1}^{n}\left(u_{i}, e_{j}\right)^{2}\right]^{2}} \tag{20}
\end{equation*}
$$

is on the sphere (I, r) and on a face of S.
From (19),(20), summing with respect i we take:

$$
\begin{equation*}
r . \sum_{i=1}^{n+1} c_{i}\left[\sum_{j=1}^{n}\left(u_{i}, e_{j}\right)^{2}\right]^{\frac{1}{2}} \leq \sum_{i=1}^{n+1} c_{i} \tag{21}
\end{equation*}
$$

where $\sum_{i=1}^{n+1} c_{i} u_{i}=0$. But $\sum_{j=1}^{n+1}\left(u_{i}, e_{j}\right)^{2}=u_{i}^{2}=1$. So from this and the above we can have:

$$
r . \sum_{i=1}^{n+1} c_{i}\left[\sum_{j=1}^{n}\left(u_{i}, e_{j}\right)^{2}\right]^{\frac{1}{2}}\left[\sum_{j=1}^{n}\left(u_{i}, e_{j}\right)^{2}\right]^{\frac{1}{2}} \leq \sum_{i=1}^{n+1} c_{i}
$$

or,

$$
r . \sum_{i=1}^{n+1} c_{i} \sum_{j=1}^{n}\left(u_{i}, e_{j}\right)^{2} \leq \sum_{i=1}^{n+1} c_{i}
$$

or

$$
r \cdot \sum_{j=1}^{n} \cdot \sum_{i=1}^{n+1} c_{i}\left(u_{i}, e_{j}\right)^{2} \leq \sum_{i=1}^{n+1} c_{i}
$$

but it is known from (3c) that

$$
\sum_{i=1}^{n+1} c_{i}\left(u_{i}, e_{j}\right)^{2} \leq \lambda_{n}
$$

and finally

$$
r \leq \frac{\sum_{i=1}^{n+1} c_{i}}{n \lambda_{n}}
$$

3.Let

$$
s_{1}=\sum_{1}^{n} \frac{x_{i}^{2}}{a_{i}^{2}}-1
$$

be the inscribed ellipsoid in simplex S, then

$$
\begin{equation*}
\sum_{j=1}^{n} a_{j} \leq \frac{\sum_{i=1}^{n+1} c_{i}}{\lambda_{n}} \tag{22}
\end{equation*}
$$

For an orthonormal system in E^{n} and every $x \in s_{1}$ holds

$$
\sum_{j=1}^{n} a_{j}^{-2}\left(x-y, e_{j}\right)^{2} \leq 1
$$

where y the center of the s_{1}. Let $x_{i} \in s_{1} \cap S$ then

$$
x_{i}=y+\left(\sum_{j=1}^{n} a_{j}^{2}\left(u_{i} e_{j}\right) e_{j}\right)\left(\sum_{j=1}^{n} a_{j}^{2}\left(u_{i} e_{j}\right)^{2}\right)^{\frac{-1}{2}}
$$

From the above we see that

$$
\sum_{i=1}^{n+1} c_{i}\left(\sum_{j=1}^{n} a_{j}^{2}\left(u_{i}, e_{j}\right)^{2}\right)^{\frac{1}{2}} \leq \sum_{i=1}^{n+1}
$$

and from Cauchy-Schwarz inequality follows

$$
\sum_{j=1}^{n} a_{j}\left(u_{i}, e_{j}\right)^{2} \leq\left(\sum_{j=1}^{n} a_{j}^{2}\left(u_{i}, e_{j}\right)^{2}\right)^{\frac{1}{2}}\left(\sum_{j=1}^{n}\left(u_{i}, e_{j}\right)^{2}\right)^{\frac{1}{2}}
$$

but

$$
\sum_{j=1}^{n+1}\left(u_{i} e_{j}\right)^{2}=1
$$

hence

$$
\sum_{i=1}^{n+1} c_{i} \cdot \sum_{j=1}^{n} a_{j}\left(u_{i}, e_{j}\right)^{2} \leq \sum_{i=1}^{n+1} c_{i}
$$

or

$$
\sum_{j=1}^{n+1} a_{j} . \sum_{i=1}^{n+1} c_{i}\left(u_{i}, e_{j}\right)^{2} \leq \sum_{i=1}^{n+1} c_{i}
$$

and according (3c) we take

$$
\left(\sum_{j=1}^{n} a_{j}\right) \lambda_{n} \leq \sum_{i=1}^{n+1} c_{i}
$$

4. Some other relations

$$
0 \leq \sum_{i=1}^{n+1} c_{i}\left(1-\left(x, u_{i}\right)\right)\left(R+\left(x, u_{i}\right)\right)
$$

where $|x|=R$. From the above follows that:

$$
0 \leq R . \sum_{i=1}^{n+1} c_{i}+(1-R) \sum_{i=1}^{n+1} c_{i}\left(x, u_{i}\right)-\sum_{i=1}^{n+1} c_{i}\left(x, u_{i}\right)^{2}
$$

But

$$
\sum_{i=1}^{n+1} c_{i}\left(x, u_{i}\right)^{2} \geq|x|^{2} \lambda_{n}
$$

that is because of $(1-R) \sum_{i=1}^{n+1} c_{i}\left(x, u_{i}\right)=0$
Therefore

$$
R \leq \frac{\sum_{i=1}^{n+1} c_{i}}{\lambda_{n}}
$$

5.Some interesting results about the John's matrix.

Let

$$
A=\left[a_{i j}\right]=\left(D e_{i}, e_{j}\right)=\sum_{k=1}^{n+1} c_{k}\left(u_{k}, e_{j}\left(u_{k}, e_{j}\right)\right.
$$

The characteristic equation is

$$
|A-\lambda . I|=0
$$

that is:

$$
p_{0} \lambda^{n}+p_{1} \lambda^{n-1}+\ldots+p_{n}=0
$$

So $p_{0}=1, \quad p_{1}=\operatorname{tr} A=-\left(a_{11}+a_{22}+\ldots+a_{n n}\right)$ hence

$$
\left.\lambda_{1}+\lambda_{2}+\ldots \lambda_{n}=\sum_{i=1, n+1} \sum_{j=1, n} c_{(} u_{i}, e_{j}\right)^{2}=\sum_{i=1}^{n+1} c_{i}
$$

where $\lambda_{1} \geq \lambda_{2} \ldots \geq \lambda_{n}$ the characteristic roots.
Obviously

$$
n \lambda_{1} \geq \sum_{1}^{n+1} c_{i} \geq n \lambda_{n}
$$

For $A=I_{n}$, we have $\lambda_{i}=1$

6. The proof of John Theorem for the simplex.

The condition of John

$$
\begin{equation*}
\left[\sum_{i=1}^{n+1} c_{i} u_{i}=0 \quad, A=I_{n}\right] \tag{23}
\end{equation*}
$$

We suppose that (23) is true. We will prove that the max inscribed ellipsoid in a simplex will be sphere.
From the above (3) the condition (23) and the Cauchy-Schwarz Theorem we see that

$$
a_{1} a_{2} \ldots a_{n} \leq \frac{1}{\lambda_{n}^{n}}
$$

but from (23) $\lambda_{1}=\lambda_{2}=\ldots=\lambda_{n}=1$. So $a_{1}=a_{2}=\ldots=a_{n}$.
We suppose now that the max. ellipsoid is sphere, then we will prove (23).
Indeedl, according the well known Day's see (4) theorem follows that the simplex will be regular so the condition of John that is (23) is true
7. The Algebra of the vector relative to a simplex

In the beginning of this paper, we started with the basic definitions of the
vector relative to a simplex. Combining Linear Algebra and Geometry provides sometimes interesting results. In the following we will mention some properties of this special vectors without giving the proofs.

1. $D(a, D a)=\sum_{i, j} c_{i} c_{j}\left(u_{i}, u_{j}\right)\left(u_{i}, a\right)\left(u_{j}, a\right)$
2. $(D a, D B)=(D(a), b)$
3. $\left(D\left(a_{1}+a_{2}\right), b\right)=(D(D a), b)$
4. $(D a, b)=0$
5. $-(D a, b)=(D(-a), b)=(D a,-b)$
$6(D(D v), v)-(D v, v)=(D(D v-v), v)$
$7\left(D e_{i}, D e_{j}\right)=\sum_{k, p} c_{k} c_{p}\left(u_{k}, e_{i}\right)\left(u_{p}, e_{j}\right)\left(u_{k}, u_{p}\right)$
6. $\left(D v_{1}, v_{2}\right)=\lambda_{1}\left(v_{1}, v_{2}\right) \bigwedge\left(D v_{2}, v_{1}\right)=\lambda_{2}\left(v_{1}, v_{2}\right) \rightarrow \lambda_{1}=\lambda_{2}$
7. $|D a|^{2}=(D a, D a)$
8. $(D a, a) \leq|D a||a|$
9. $(D a, D b) \leq|D a| D b \mid$
10. $(D a, b)^{4} \leq(D a, D a)(D b, D b)|a|^{2}|b|^{2}$

References

1.P.M.Gruber, Convex and Discrete Geometry. Springer
2.Keith Ball, Ellipsoids of maximal volume in convex bodies. Geometriae Dedicata 41:241-250,1992.
3.Keith Ball in Flavors of Geometry. Edited by Silvio Levy. Cambridge University Press.
4.Mahlon M. Day Polygons circumscribed about closed convex curves, Trans. Am. Math. Soc. vol 62 pp 315-319, 1957

