Problems of plane Geometry.

George Tsintsifas

Problem1

Let $A B C$ be a triangle and the points $A^{\prime}, B^{\prime}, C^{\prime}$ are on the sides $B C, C A, A B$ respectively so that $B A^{\prime}=C B^{\prime}=A C^{\prime}$.
Prove that the incenters of the triangles $A B C, A^{\prime} B^{\prime} C^{\prime}$ are common, if and only if, the triangle $A B C$ is equilateral.
Solution
We consider the common incenter O as the origin of the Cartesian system. We will denote on the plane of $A B C$ the vector $\overrightarrow{O M}$ by M. The sides of the triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are a, b, c and $a^{\prime}, b^{\prime}, c^{\prime}$.
We know that the incenter of $A B C$ is the point $\frac{a A+b B=c C}{a+b+c}$. Therefore we will have.

$$
\begin{equation*}
\frac{a A+b B+c C}{a+b+c}=O \quad \frac{a^{\prime} A^{\prime}+b^{\prime} B^{\prime}+c^{\prime} C^{\prime}}{a^{\prime}+b^{\prime}+c^{\prime}}=O \tag{1}
\end{equation*}
$$

Let us suppose $B A^{\prime}=C B^{\prime}=A C^{\prime}=p$. We easily see that

$$
\begin{equation*}
A^{\prime}=\frac{p C+(a-p) B}{a}, \quad B^{\prime}=\frac{p A+(b-p) C}{b}, \quad C^{\prime}=\frac{p B+(c-p)}{c} \tag{2}
\end{equation*}
$$

Let G the barycenter of the triangle $A^{\prime} B^{\prime} C^{\prime}$, it is:

$$
\begin{equation*}
A^{\prime}+B^{\prime}+C^{\prime}=3 G \tag{3}
\end{equation*}
$$

We can easily see that: In a triangle, if the centroid coincides with the incenter, then the triangle must be equilateral.
That is if $G=O$ then the triangle $A^{\prime} B^{\prime} C^{\prime}$ is equilateral. If G is not O then the triangle $A^{\prime} B^{\prime} C^{\prime}$ is not equilateral.

From the above we conclude that the condition to be the triangle $A^{\prime} B^{\prime} C^{\prime}$ equilateral is:

$$
A^{\prime}+B^{\prime}+C^{\prime}=0
$$

hence from (2) have

$$
\begin{equation*}
a b c\left(A^{\prime}+B^{\prime}+C^{\prime}\right)=p b c C+c b(a-p) B+p a c A+a c(b-p) C+p a b B+a b(c-p) A=0 \tag{4}
\end{equation*}
$$

From (1) we have $A=-\frac{b B+c C}{a}$. We replace A in (4) and we have after some Algebra

$$
\begin{equation*}
\left(b c(a-p)-p b c+a b p-b^{2}(c-p)\right) B+\left(p b c-p c^{2}+a c(b-p)-b c(c-p)\right) C=0 \tag{5}
\end{equation*}
$$

Relation (5) holds only for when coefficients of the vectors B and C are zero. That is

$$
\begin{align*}
& b c(a-p)-p b c+p a b-b^{2}(c-p)=0 \tag{6}\\
& p b c-p c^{2}+a c(b-p)-b c(c-p)=0 \tag{7}
\end{align*}
$$

From (6) and (7) we take

$$
\begin{equation*}
(a-b)(b-c)(c-a)=0 \tag{8}
\end{equation*}
$$

From (8) follows that the triangle $A B C$ is only isosceles. Let us suppose that $b=c$.That is for the triangle $A B C$ is $A B=A C$

$\operatorname{aFrom}(1)$ is: $a A+b B+b C=0$ that is $a A+b(2 D)=0$ where $A M$ is the altitude of the isosceles triangle $B A C$. But $2 \cdot|\overrightarrow{O D}|=|\overrightarrow{O A}|$ or $\mathrm{a}=\mathrm{b}$. that is $\mathrm{b}=\mathrm{c}$ and $\mathrm{b}=\mathrm{a}$ hence the triangle $A B C$ is equilateral

comments

For the solution of the following problems we are using the same method Problem 2

The same us the problem 1 but here the centroids of the two triangles coincide.
So here we have

$$
A+B+C=0 \quad A^{\prime}+B^{\prime}+C^{\prime}=0
$$

We replace in (4) $A=-B-C$. The vectors B, C are independent so their coefficients are zero.Finally we have

$$
b c+a b=2 a c \quad b c+a c=2 a b
$$

And from here $a=b=c$

problem 3

The triangle $A B C$ is equilateral, $A^{\prime} B^{\prime} C^{\prime}$ is the inscribed triangle. Here the incenters coincide. We have to prove that the triangle $A^{\prime} B^{\prime} C^{\prime}$ is equilateral. Another problem of the same type is the following. The inscribed triangle $A^{\prime} B^{\prime} C^{\prime}$ in $A B C$ is equilateral. The incenters coincide. We prove that the triangle $A B C$ is equilateral. For the solution we can use the same method. But here there is also another one simple solution.

Problem 4

The inequality of Pedoe
Let $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ two triangles. We denote by a, b, c and $a^{\prime}, b^{\prime}, c^{\prime}$ their sides and E, E^{\prime} the area. We call the quantity of Pedoe the symmetrc (for $\left.a, b, c, a^{\prime}, b^{\prime}, c^{\prime}\right)$ formula

$$
P=\sum a^{2}\left(-a^{\prime 2}+b^{\prime 2}+c^{\prime 2}\right)
$$

The inequality of Pedoe is:

$$
\begin{equation*}
P \geq 16 E E^{\prime} \tag{9}
\end{equation*}
$$

For the proof we will use the Leibnitz s formula

$$
\begin{equation*}
\sum_{1}^{n} m_{i} \cdot p A_{i}^{2}=m \cdot p G^{2}+\frac{1}{m} \sum_{i>j} m_{i} m_{j} \cdot a_{i j}^{2} \tag{10}
\end{equation*}
$$

where $A=\left(A_{1}, A_{2}, \ldots . A_{n}\right)$ is an simplex, $G=\left(m_{1}, m_{2}, \ldots \ldots . m_{n}\right)$ the centroid, that is
$G=\frac{\sum m_{i} A_{i}}{\sum m_{i}}$. and $\mathrm{p} \in R^{n}$ and $m=\sum m_{i}$.

For the triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, we suppose

$$
G\left(m_{1}, m_{2}, m_{3}\right)=G\left(a^{2}\left(-a^{\prime 2}+b^{2}+c^{2}\right), b^{2}\left(a^{2}-b^{2}+c^{2}\right), c^{2}\left(a^{2}+b^{2}-c^{2}\right)\right)
$$

and $\mathrm{p}=\mathrm{O}$ the circumcenter of $A B C$. We will have

$$
\begin{gathered}
R^{2}\left[\sum a^{2}\left(-a^{\prime 2}+b ;^{2}+c^{\prime 2}\right)\right]^{2}= \\
=\sum a^{2} b^{2} c^{2}\left(a^{\prime 2}-b^{\prime 2}+c^{\prime 2}\right)\left(a^{2}+b^{\prime 2}-c^{2}\right)= \\
=a^{2} b^{2} c^{2}\left[\sum a^{4}-\left(b^{\prime 2}-c^{\prime 2}\right)^{2}\right]^{2}=
\end{gathered}
$$

or

$$
=R^{2}\left[\sum a^{2}\left(-a^{\prime 2}+b^{\prime 2}+c^{\prime 2}\right)\right]^{2} \geq a^{2} b^{2} c^{2} 16 E^{2}
$$

or

$$
\sum a^{2}\left(-a^{\prime 2}+b^{2}+c^{\prime 2}\right) \geq \frac{4 E R \cdot 4 E^{\prime}}{R}=16 E E^{\prime}
$$

problem 5

Let $A B C$ be atriangle and P an interior point. We easily prove that there is a triangle wit sides $a A P, b B P, c C P$. where by $A P, B P, C P$ we denote the str. line segments $A P, B P, C P$. We construct the triangle $A P P^{\prime}$ similar to $A P B$

The triangles $A P P^{\prime}$ and $A B C$ are similar. The triangle $P P^{\prime} C$ has sides $P P^{\prime}=\frac{a}{c} B P$ and $P^{\prime} C=\frac{b}{c}$
The triangles $(a A P, b B P, c C P)$ and $c \cdot\left(P P^{\prime} C\right)$ are similar.
The angles are

$$
\begin{gathered}
\angle P C-\angle A=\angle P C P^{\prime} \text { opposite of } a A P \\
\angle C P A-\angle B=\angle C P P^{\prime} \text { opposite of } b B P
\end{gathered}
$$

$\angle A P B-\angle C=\angle P P^{\prime} C$ opposite of $c C P$
A second triangle $A^{\prime} B^{\prime} C^{\prime}$ has sides $a^{\prime}, b^{\prime}, c^{\prime}$. we determine the point P in the triangle $A B C$ so that:

$$
\begin{equation*}
\frac{a A P}{a^{\prime}}=\frac{b B P}{b^{\prime}}=\frac{c C P}{c^{\prime}}=m \tag{11}
\end{equation*}
$$

Cos. theorem in the triangle $B P C$ gives:

$$
a^{2}=m^{2}\left[\frac{b^{\prime 2}}{b^{2}}+\frac{c^{\prime 2}}{c^{2}}-\frac{2 b^{\prime} c^{\prime}}{b c} \cos \left(A+A^{\prime}\right)\right]
$$

After some Algebra we take

$$
a^{2}=\frac{m^{2}}{b^{2} c^{2}}\left[b^{\prime 2} c^{2}+c^{\prime 2} b^{2}-\frac{\left(b^{2}+c^{2}-a^{2}\right)\left(b^{\prime 2}+c^{\prime 2}-a^{\prime 2}\right)}{2}+8 E E^{\prime}\right]
$$

Consequently

$$
a^{2}=\frac{m^{2}}{b^{2} c^{2}}\left[\frac{P}{2}+8 E E^{\prime}\right]
$$

where P is the quantity Pedoe. and

$$
\begin{equation*}
m=\frac{a b c}{\left[\frac{P}{2}+8 E E^{\prime}\right]^{1 / 2}} \tag{12}
\end{equation*}
$$

From the above we can find new triangle inequalities of Pedoe s style. For example taking in mind the inequality $a a^{\prime}+b b^{\prime}+c c^{\prime} \geq 4 \sqrt{3 E E^{\prime}}$ we easily find that

$$
\sum a^{2} A P \geq \frac{4 a b c}{P^{1 / 2}} \sqrt{3 E E^{\prime}}
$$

Here we can prove anothere important inequality. The inequality of O. Bottema. that is for two triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ and the internal points P and P^{\prime} holds

$$
a^{\prime} A P+b^{\prime} B P+c^{\prime} C P \geq\left(P / 2+8 E E^{\prime}\right)^{1 / 2}
$$

We need n elementary inequality, for the triangle $A B C$ and two internal points P and M we have

$$
a \cdot A P \cdot A M+b \cdot B P \cdot B M+C . C P . C M \geq a b c
$$

From (11) and (12 and the above) follows Bottema s inequality the Apollonius circles, the isodynamic centers
It is known that the Apollonius circles have a common chord $P P^{\prime}$. The points P, P^{\prime} are called Isodynamic points. One of the two points let the P is interior in the triangle $A B C$. We easily see that

$$
\frac{A P}{b c}=\frac{B P}{a c}=\frac{C P}{a b}
$$

so we can take

$$
\frac{a A P}{a b c}=\frac{b B P}{a b c}=\frac{c C P}{a b c}
$$

Hence the triangle ($a A P, b B P, c C P$) is equilateral . Therefore we have:

$$
\angle B P C=60^{\circ}+A \quad \angle C P A=60^{\circ}+B \quad \angle A P B=60^{\circ}+C .
$$

we also can prove that the feeds of P on the sides of $A B C$ are the vertices of equilateral triangle, the minimum inscribed trianle in the $A B C$.

Referenses

Geometric Inequalities O. Bottema and others.. Wolters-Nordhoff Publishing Groningen 1969.
Advanced Euclidean Geometry Roger A. JohnsonDover
Recent Advances in Geometric Inequalities, D.S. Mitrinovic, J.E Pecaric and V. Volonec

Triangle inequalities from triangle Inequality, M.S. Klamkin, Elemente der Mathematik
Geometry G. Tsintsifas

