A problem of Geometry.

G. A. Tsintsifas
Thessaloniki, Greece

Let $A_{1} A_{2} A_{3}$ be an equilateral triangle inscribed in the circle $(O, R=1)$. The point M is on the circle so $O \vec{M}=v,|v|=1$. We denote $O \overrightarrow{A A}_{i}=u_{i}$.
(a). Prove: $\sum_{1}^{3}\left(u_{i}, v\right)^{2}=3 / 2$
(b) Find $\operatorname{Max} \sum_{1}^{3}\left|\left(u_{i}, v\right)\right|$

Solution

(a)

By symmetry

$$
u_{1}+u_{2}+u_{3}=0
$$

Also

$$
u_{1}^{2}+u_{1} \cdot u_{2}+u_{1} \cdot u_{3}=0
$$

That is

$$
1+2 u_{1} \cdot u_{2}=0
$$

We easily see that

$$
\left(u_{i} \cdot u_{j}\right)=-\frac{1}{2}, \text { for } \quad i \neq j
$$

We suppose now

$$
\begin{equation*}
v=p_{1} u_{1}+p_{2} u_{2}+p_{3} u_{3} \quad \text { and } \quad \sum_{1}^{3} p_{i}=1 \tag{1}
\end{equation*}
$$

where p_{i} the barycentric coordinates of the point M

$$
\begin{equation*}
v^{2}=\left(\sum_{1}^{3} p_{i} u_{i}\right)^{2} \quad \text { or } \quad 1=p_{1}^{2}+p_{2}^{2}+p_{3}^{2}-p_{1} p_{2}-p_{2} p_{3}-p_{3} p_{1} \tag{2}
\end{equation*}
$$

From (1) follows that

$$
\begin{equation*}
1=p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+2 p_{1} p_{2}+2 p_{2} p_{3}+2 p_{3} p_{2} \tag{3}
\end{equation*}
$$

we multiply the relation (2) by 2 and then we add it with (1). we take

$$
\begin{equation*}
p_{1}^{2}+p_{2}^{2}+p_{3}^{2}=1 \tag{4}
\end{equation*}
$$

Also

$$
v \cdot u_{1}=p_{1}+\left(\frac{-1}{2}\right)\left(p_{2}+p_{3}\right) \quad \text { or } \quad \text { v. } u_{1}=\frac{3 p_{1}-1}{2}
$$

then

$$
\begin{equation*}
v \cdot p_{1} u_{1}=\frac{3 p_{1}^{2}-p_{1}}{2} \tag{5}
\end{equation*}
$$

Adding with respect $1,2,3$ and from (1),(4), (5) follows that

$$
\begin{equation*}
\sum_{1}^{3}\left(u_{i}, v\right)^{2}=3 / 2 \tag{6}
\end{equation*}
$$

(b)

We now believe after the formula (6) the inequality of Cauchy- Schwarz will lead us directly to the solution. Let see it.

$$
\frac{\left(u_{1}, v\right)^{2}+\left(u_{2}, v\right)^{2}+\left(u_{3}, v\right)^{2}}{3} \geq\left[\frac{\left|u_{1} \cdot v\right|+\left|u_{2} \cdot v\right|+\left|u_{3} \cdot v\right|}{3}\right]^{2}
$$

and then

$$
\begin{equation*}
\frac{3}{\sqrt{2}} \geq\left|u_{1} \cdot v\right|+\left|u_{2} \cdot v\right|+\left|u_{3} \cdot v\right| \tag{7}
\end{equation*}
$$

Is the problem solved?? But not. The Max of $\left|u_{1} \cdot v\right|+\left|u_{2} \cdot v\right|+\left|u_{3} \cdot v\right|$ is when $\left|u_{1} \cdot v\right|=\left|u_{2} \cdot v\right|=\left|u_{3} \cdot v\right|$. But this relation does not exist in Geometry.

\wedge^{\prime}
We suppose that M is in the angle $A_{1} O A_{2}$ and $\left|u_{1}, v\right|=\left|u_{2}, v\right|$. Hence the point M must be the diametrical A_{1}^{\prime} of the point A_{1}, that is $A_{1}^{\prime}=M$. But then $\left|u_{3}, v\right|=R=1$, that is $\left|u_{1}, v\right|=\left|u_{2}, v\right| \neq\left|u_{3}, v\right|$. That is, the relation (7) is no true.
We will try otherwise. We see that $u_{1} \cdot v+u_{2} \cdot v+u_{3} \cdot v=0$, so we can suppose that $u_{1} v, u_{2} v \geq 0$, and $u_{3} . v \leq 0$. So we have:

$$
\sum_{1}^{3}\left|u_{i} \cdot v\right|=\left(u_{1}+u_{2}-u_{3}\right) v=2\left(u_{1}+u_{2}\right) v \leq 2\left|u_{1}+u_{2}\right||v|=2\left|u_{1}+u_{2}\right|
$$

or

$$
\left[\sum_{1}^{3}\left|u_{i} \cdot v\right|\right]^{2} \leq 4\left|u_{1}+u_{2}\right|^{2}=4\left(u_{1}^{2}+u_{2}^{2}+2 u_{1} \cdot u_{2}\right)=4\left(2-2 \frac{1}{2}\right)=4
$$

Hence $\operatorname{Max} \sum_{1}^{3}\left|u_{i} \cdot v\right|=2$. For $M=A_{3}^{\prime}$

The Generalization

The regular simplex $S_{n}=A_{2} A_{2} \ldots A_{n+1}$ is inscribed in the unit sphere $(O, 1)$ in E^{n}. Let $O A_{i}=u_{i}$ and M on (O, R). Suppose that $O \vec{M}=v$. Find the
$\operatorname{Max} \sum_{i=1}^{n+1}\left|u_{i} \cdot v\right|$.
We work as in E^{3} and we find that $u_{i} \cdot u_{j}=-\frac{1}{n}$
For some index $m \in(1,2,3 \ldots . . n)$ we will take

$$
\sum_{i=1}^{n+1}\left|u_{i} \cdot v\right|=\left[\sum_{i=1}^{m} u_{i}-\sum_{i=m+1}^{n+1} u_{i}\right] \cdot v=\left[2 \sum_{i=1}^{m} u_{i}\right] v \leq 2\left|\sum_{i=1}^{m} u_{i}\right|
$$

Also

$$
\left|\sum_{i=1}^{m} u_{i}\right|^{2}=m+2\binom{m}{2}\left(-\frac{1}{n}\right)=\frac{m(n-m+1}{n}
$$

The max for $m=\left[\frac{n+1}{2}\right]$ and equal to

$$
\frac{n+1}{\sqrt{n}} \text { for } \quad n=\text { odd } \quad \text { and } \quad \sqrt{n+2} \quad \text { for } \quad n=\text { even }
$$

P.S.

We can determine the point M_{0} so that the vector $O \vec{M}_{0}$ gives the Max. We divide the points $A_{1}, A_{2}, \ldots \ldots A_{n+1}$ int two groups G_{1}, G_{2} so that the first includes $\left[\frac{n+1}{2}\right]$ points and the other $n-\left[\frac{n+1}{2}\right]$ points. Let g_{1}, g_{2} the cendtroids of G_{1}, G_{2} respectively. The line $g_{1} g_{2}$ intersects the circonscribed sphere to points M_{0} and M_{0}^{\prime}. The number $\left[\frac{n+1}{2}\right]$ determines and the number of solutions.

> e.mail: gtsintsifas@yahoo.com

Blog: gtsintsifas

