Integral point property of a convex body in the lattice plane.

G. A. Tsintsifas

Joseph Hammer in (1) proved some analogous theorem to the well known theorem of Blichfeldt in Geometry of Numbers.

Blichfeldt 's theorem states that if the area of a plane set is greater than the one, then, the plane set can be translated so that would cover at least two lattice points.

Joseph Hammer substituted Blichfeldt 's translation with a rotation around special points. Especially he proved that if a convex set has area greater than $\frac{9}{8}\pi$ and its centroid concides with a lattice point, then by rotation around that point, the convex set can be brought into such a position that it covers beside the centroid, two further lattice points.

We will prove a similar theorm.

Let H be a convex set in a plane. For an interior point $M \in H$ there is a line, through the point M, so that the ratio

$$f(M) = \frac{AM}{AB} = min$$

where A, B the intersections of the line with the boundary of H. We call k(H) the max of these min ratios, so that

$$maxf(M) = k$$

The radio k is called "centralness coefficient" for H and such a position O of M "center" of H. That is

$$\max f(M) = f(O) = k$$

B.H.Newmann () proved for a plane convex set that there is a unique "center" and that the "centralness coefficient" satisfies the inequality

$$\frac{1}{2} \le k \le \frac{2}{3}$$

see also (3),(4).

We will prove:

Theorem

Let H be a convex set in the plane so that

$$areaH \ge \frac{\pi}{4k^2}$$

where k the centralness coeficient and O its "center". We suppose that O consides with a lattice point. The convex set H is possible to be brought into such a position by rotation that it covers, besides O, two further lattice points lying in a str. line through the point O.

Proof

It is well known that for a convex set H holds:

$$|H| = areaH \le \frac{d^2}{4}\pi\tag{1}$$

where d the diameter of H, see (2), (5).

Let A, B points of H, so that (AB) = D and $AO \cap boundary H = M$ and $BO \cap boundary H = N$. The parallel line through the point O intersets AN, BM at the points K, L respectively.

From the similar triangles OML, AMB we will have:

$$\frac{OL}{AB} = \frac{OM}{AM} \ge k$$

Therefore using the relation (1) and our supposition we have:

$$OL \ge kd \ge 2k\sqrt{\frac{|H|}{\pi}} \ge 1$$

Similarly $OK \geq 1$. Hence it is well unterstood that by rotating H around O we will find such a position.

Comment

The generalization in E^n is easy. The centralness coeficent is $\frac{1}{2} \leq k \leq \frac{n}{n+1}$ see (1), if the volume of the convex set H is $V(H) \geq (2k)^n \cdot k_n$ where k_n is the volume of the unit sphere in E^n , taking in our mint that $V(H) \leq k_n (\frac{d}{2})^n$ the solution is the same as in E^2

References

- 1. Joseph Hammer, On some analogies to a theorem of Blichfeldt in Geometry of numbers, Amer.Math.Monthly, $vol75N^{o}2$, Feb.1968 pag 157-160.
- 2. Ross Honsberger, Mathematical Morcels, The Math.Assoc.of America, p 66.
- 3. G. Lekkerker, Geometry of Numbers, Wolters-Noordhoff, 1969 p 8
- 4. B.H. Neuman, On some affine invariants of closed convex regions, J. London Math. Soc. Vol 14, 1932, p. 262-272
- 5. I. M. Yaglom and V. G. Boltyanski, Convex figures, Hotl, Rinehart and Wiston, New York 1961.