The Davenport Hajos's Theorem

G. A. Tsintsifas

A nice problem of the combinatorial Geometry is the theorem of Davenport-Hajos. It is about n+2 points plus one in E^n . That is for the points A_1, A_2, A_{n+2} in E^n and for every point O, one, at least from the angles $A_i O A j$ is non obtuse. That is one at least is: $\angle A_i O A_j \le \frac{\pi}{2}$.

Proof

We will use the theorem of Helly. In E^n the ball is $B^n = (x_1^2 + x_2^2 + ... x_n^2 \le 1)$ and the sphere $S^{n-1} = (x_1^2 + x_2^2 + ... x_n^2 = 1)$. The theorem of Helly is:

In S^{n-1} there are $F_1, F_2, ... F_k$, $k \ge n+2$ convex sets, so that every n+1 have a common point, then all the convex sets will have a common point. For the simplicity we will prove the Davenport Helly's theorem for n=3. The proof of the general case is similar.

So, in E^3 we have five points A_1, A_2, A_3, A_4, A_5 and we will show that for every point O we have at least $A_iOA_j \leq \frac{\pi}{2}$ for some $i \neq j \in (1, 2, 3, 4, 5)$

We can suppose, without any loss of the generality, that the points A_i , i=1,2,3,4,5 are in the surface of the unit ball, the sphere $S^2=x_1^2+x_2^2+x_3^2=1$. We will use the reductio ab absurdium method. We accept for a moment that $\angle A_iOA_j > \frac{\pi}{2}, i \neq j$

We take A_1 . We have: $arc(A_1A_j) > \frac{\pi}{2}$. Therefore the points A_2, A_3, A_4, A_5 , will be in the opposit semisphere of A_1 , H_{a_1} with pole the diametrical point a_1 of the point A_1 .

We will denote the open semisphere with pole the point M by H_M . It is easy to see that:

$$arc(a_1A_j) < \frac{\pi}{2}, for j = 1, 2, 3, 4, 5$$
 (1)

From the above (1) we see that the convex sets H_{A_1} , H_{A_2} , H_{A_3} , H_{A_4} , H_{A_5} have every four, non void intersection, so accordly the Helly's theorem for the sphere in E^3 ,

$$\bigcap_{j=1}^{5} H_{A_j} \neq \emptyset$$

so we can suppose

$$\bigcap_{j=1}^{5} H_{A_j} \neq a$$

Therefore $arc(aA_j) < \frac{\pi}{2}$, ..forj = 1, 2, 3, 4, 5. Hence the H_a includes the five points A_1, A_2, A_3, A_4, A_5 . From here we can see that at least one $arc(A_iA_j) \le \frac{\pi}{2}$. Because of, the points A_2, A_2, A_3, A_4, A_5 can be assigned in the four octant of a Cartesian system OXYZ in three space.

References

- 1. M.J.Baker, A Heely-type theorem on a sphere.
- 2. M.J.Baker, A spherical Helly type theorem, Pacific journal of Mathematics, vol 23, No 1, 1967.
- 3. I.Barany, M.Katchalski, J.Pach, Quantitative Helly-type Theorems, Proc. of the Amer.Math.Soc. vol.86,No 1, Sep.1982.