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We start with a triangle ABC and an interior point M . The cevians
determined by M are the line segments AA1,BB1,CC1 through M that
join a vertex to a point on the opposite side (with A1 on BC, B1, on CA

and C1 on AB). We call C(M) = △A1B1C1,the cevian triangle for M.
The point M also determines a pedal triangle P (M) = △A2B2C2 whose
vertices are the feets A2,B2,C2 of the perpendiculars dropped from M to the
sides BC,CA and AB respectively. Problem E2716* in the American Math-

ematical Monthly [1] called for a proof that

perimeterC(M) ≥ perimeterP (M).

C.S. Gardner submitted the only solution; his argument was based on ad

hoc reasoning in several cases. Some years ago I found a shorter and more
analytical proof based on a lemma that seems interesting in its own right.

first Proof

Lemma

Let ABC be a triangle and φ, ω, θ three positive convex angles so that
φ + ω + θ = 2π and M is a point of the plane of the triangle ABC. We
denote

F (M) = AM.sinφ + BM.sinω + CM.sinθ

case (a). For φ ≥ A ,ω ≥ B, θ ≥ C the minimum of F(M) is taken for an
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internal to ABC point P so that

6 BPC = φ, 6 CPA = ω and 6 APB = θ

Therefore we will have:
F (M) ≥ F (P ) (1)

case (b). For φ ≤ A , it holds:

AM.sinφ + BM.sinω + CM.sinθ ≥ AB.sinω + AC.sinθ (2)

Proof
case (a)
We are refered in an orthogonal Cartesian system O.xyz, and let:
A = (x1, y1), B = (x2, y2), C = (x3, y3), M = (x, y).
We will have:

F (M) = F (x, y) =
i=3
∑

i=1

sinφ
√

(x − xi)2 + (y − yi)2

cyclic relative φ, ω, θ.

The function Fx,y is positive determined in the triangle ABC, it is continue
and has derivates except the vertices A,B,C. We will find the min. of F(x,y)
in ABC-(A,B,C) and we will examine it separetely in the vertices A,B,C.
Denoting by e1, e2 the unit vectors of the Cartesian systemO.xyz, we see
that:

gradF (x, y) =
θF

θx
.e1 +

θF

θy
.e2 =

i=3
∑

i=1

sinφ.
~r1

r1

cyclic relative φ, ω, θ and ~r1 = ~AM, ~r2 = ~BM, ~r3 = ~CM . Let now
~r1

r1

= a0,
~r2

r2

= b0,
~r3

r3

= c0. The minimum for F(x,y) is given by:

a0sinφ + b0sinω + c0sinθ = 0 (3)

We succesively multiply the relation (1) by a0, b0, c0. Denoting by
t1 = b0.c0, t2 = c0.a0 and t3 = a0.b0 we find the system.

sinφ + t2sinω + t3sinθ = 0

t1sinθ + sinω + t3sinφ = 0
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t1sinω + t2sinφ + sinθ = 0

The solution of the above system is easy and we take:

t1 = b0.c0 = cos(ω + θ)

That is for the minimum F(x,y) the point M must coincide to a point P, so
that

6 BPC = 2π − (ω + θ) = φ.

Similarly we find that:6 CPA = ω, 6 APB = θ.

We will examine now the case M=A, that is F (A) = bsinθ + csinω

Let P the above determined point. We consider the circle BPC of radius R’
and we denote by A’ the intersection of the line AP and the circle BPC.
Ptolemy’s inequality to the quadrilateral ABA’C gives:

c.CA′ + b.BA′ ≥ (PA + PA′).BC = PA.BC + PA′.BC

or

2R′.c.sinω + 2R′.b.sinθ ≥ AP.BC + PA”′.BC

From Ptolemy’s theorem, we have:

PA′.BC = BP.CA′ + CP.BA′

. From the above and sinus theorem we finaly take F (A) ≥ F (P ). Similarly
F (B), F (C) ≥ F (P ).
case (b)
The proof of the inequality (2) is elementary but very interesing. Let M be a
point of the plane of the triangle ABC. We transform the triangle AMB by
a rotation of center A, angle π − A and ratio sinω

sinθ
.

The triangle AMB takes the place AM’A’ where C,A,A’ are in the line CA
with the order C-A-A’ (se fig1.).We will have:

M ′A′ = BM.
sinω

sinθ
(4)

3



Figure 1:

Also in the triangle MAM’ is.

AM ′

AM
=

sinω

sinθ
, 6 MAM ′ = π − A < π − φ.

We construct the triangle PQS so that QP=AM’,QS=AM and 6 PQS = π−φ.
Let 6 QPS = θ′, 6 QSP = ω′. We have:

θ′ + ω′ = φ

sinω′

sinθ′
=

sinω

sinθ
.

From the above equations we find

sin(φ − θ′).sinθ + sinθ′.sin(φ + θ) = 0

and after some manipulations we find:

π − θ = θ′ and π − ω = ω′

The triangles MAM’, SQP have: AM’=QP, AM=QS and 6 MAM ′ = π−A <

π − φ = 6 PQS. Therefore

MM ′ < PS =
QS.sinφ

sinθ
=

AM.sinφ

sinθ
(5)
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From (4) and (5) follows:

BM.
sinω

sinθ
+ AM.

sinφ

sinθ
> A′M ′ + M ′M

But,
A′M ′ + M ′M + CM > AA′ + AC

From the above two inequalities we take.

AM.
sinφ

sinθ
+ BM.

sinω

sinθ
+ CM > AB

sinω

sinθ
+ AC.

Theorem
For every triangle ABC and an interior point M, the perimeter of the cevian
triangle is bigger or equal to the perimeter of its pedal triangle.
Proof
Let A1B1C1 the cevian triangle and A2B2C2 the pedal triangle of the point
M, see fig.2). It is well known that the circles p1 : B1AC1, p2 : C1BA1, p3 :
A1CB1 have a common point P (Miquel’s point, see [2]). We denote R1, R2, R3

the radii of p1, p2, p3 respectively. We easily see that:

perimeterC(M) =
∑

B1C1 =
∑

2R1 sin A (6)

perimeterP (M) =
∑

B2C2 =
∑

AM sin A (7)

The meaning of the sums are easily understood.
case 1. We suppose that 6 B1PC1 = π−A > 6 B1A1C1, 6 C1PA1 = π−B >
6 C1B1A1, 6 A1PB1 = π − C > 6 A1C1B1, that is P is an interior point of
the triangle A1B1C1.

We have:

PA + PA1 ≥ AM + MA1

or
2R1 + PA1 ≥ AM + MA1

and we see that:
∑

2R1 sin A +
∑

PA1 sin A ≥
∑

AM sin A +
∑

MA1 sin A (8)

In this point we use the lemma for the triangle A1B1C1. We know that :

6 B1PC1 = π − A, 6 C1PA1 = π − B, 6 A1PB1 = π − C
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Figure 2:

.
Therefore:

∑

MA1 sin A ≥
∑

PA1 sin A (9)

From (8), (9) we see that:

∑

2R1 sin A ≥
∑

AM sin A
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that is from (6),(7) we conclude

perimeterC(M) ≥ perimeterP (M)

.
The equality case for P=M, that is C(M)=P(M) or M=H the orthocenter.

case 2..We suppose now that 6 B1PC1 = π − A < 6 B1A1C!. In this case is
A + 6 B1A1C1 > π, therefore the point A1 is an interior point of the circle
B1AC1.
The following inequalities are obvius.

2R1 ≥ AM + MA1 (10)

2R2 + A1B1 ≥ A1B + A1B1 ≥ BM + MB1 (11)

2R3 + A1C1 ≥ A1C + A1C1 ≥ CM + MC1 (12)

We multiplay the above respectively by sinA, sinB, sinC. Adding, from the
lemma case (b)., we find again that perimeterC(M) ≥ perimeterP (M).

second Proof

Lemma
Let A1B1C1 be a triangle and φ,ω,θ are three positive convex angles so that:

φ + ω + θ = 2π. (13)

For an interior point M the minimum of

Q(M) = A1M · sin φ + B1M · sin ω + C1M · sin θ (14)

is taken
case (a):
For φ ≥ 6 B1A1C1, ω ≥ 6 C1B1A1, θ ≥ 6 A1C1B1.
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in the unique position of the point M=P so that:

6 B1PC1 = φ, 6 C1PA1 = ω, 6 A1PB1 = θ.

Therefore it holds: Q(M) ≥ A1P · sin φ + B1P · sin ω + C1P · sinθ.
case (b):
For φ < 6 B1A1C1, it holds:

Q(M) ≥ B1A1 · sin ω + C1A1 · sin θ

Proof of the case (a).

q 2

q 1

q 3

A1

B1
C1

M .

A’1

P

Figure 3:

We accept the following notation. The circle which in a chord LY accepts
an angle equal to θ is denoted by: (LY, θ).
We consider the circles q1:(B1C1, φ), q2:(C1A1, ω), q3:(A1B1, θ). The circles
have a common point P, see fig. 3. So we have: 6 B1PC1=φ, 6 C1PA1=ω,
and 6 A1PB1=θ. The line A1P intersects q1 at the point A′

1
. We easily see

that:
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6 B1A
′
1
C1 = π−φ, 6 C1B1A

′
1

= 6 A′
1
PC1 = π−ω, 6 A′

1
C1B1 = 6 A′

1
PB1 = π−θ

(15)
Ptolemy’s theorem for the inscribed quadrilaterar PB1A

′
1
C1 gives:

PA′
1
· B1C1 = PB1 · C1A

′
1
+ PC1 · B1A

′
1
. (16)

From (15),(16) and the sinus theorem applied to the triangle A′
1
B1C1 we get:

PA′
1
· sin φ = PB1 · sin ω + PC1 · sin θ (17)

For every point M not belonging to q1, Ptolemy’s inequality asserts:

MA′
1
· B1C1 < MB1 · C1A

′
1
+ MC1 · BA′

1
(18)

or,
MA′

1
· sin φ < MB1 · sin ω + MC1 · sin θ (19)

Supposing that M does not belong to A1A
′
1
, we see that:

A1M + MA′
1

> AP + PA′
1

(20)

or from (17),(18),(19) and (20) follows:

A1M + B1M
sin ω

sin φ
+ C1M

sin θ

sin φ
> A1P + B1P

sin ω

sin φ
+ C1P

sin θ

sin φ
. (21)

and our lemma case (a) is proved. Obviously we have equality for M = P .
Proof of the case (b).
Let M be a point of the triangle A1B1C1. We transform the triangle A1MB1

by a rotation of center A1, angle π − 6 B1A1C1 and ratio sinω

sinθ
.

The triangle A1MB1 takes the place A1M
′A′

1
where C1, A1, A

′
1

are on the
line C1A1 in the order C1 − A1 − A′

1
(se fig4.).We have:

M ′A′
1

= B1M
sin ω

sin θ
(22)

Also in the triangle MA1M
′ occurs.

A1M
′

A1M
=

sin ω

sin θ
, 6 MA1M

′ = π − A1 < π − φ.
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Figure 4:

We construct the triangle PQS so that QP = A1M
′, QS = A1M and

6 PQS = π − φ.
Let 6 QPS = θ′, 6 QSP = ω′. We have:

θ′ + ω′ = φ,

sin ω′

sin θ′
=

sin ω

sin θ
.

From the above equations we find

sin(φ − θ′) · sin θ + sin θ′ · sin(φ + θ) = 0

and after some elementary calculations we take:

π − θ = θ′ and π − ω = ω′

The triangles MA1M
′, SQP we have: A1M

′ = QP, A1M = QS and
6 MA1M

′ = π − A1 < π − φ = 6 PQS. Hence

MM ′ < PS =
QS · sin φ

sin θ
=

A1M · sin φ

sin θ
. (23)
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From (22) and (23) follows:

B1M
sin ω

sin θ
+ A1M

sin φ

sin θ
> A′

1
M ′ + M ′M

and together with

A′
1
M ′ + M ′M + C1M > A1A

′
1
+ A1C1

we get.

A1M
sin φ

sin θ
+ B1M

sin ω

sin θ
+ C1M > A1B1

sin ω

sin θ
+ A1C1.

Theorem
For every triangle ABC and an interior point M, the perimeter of the cevian
triangle is not less than the perimeter of its pedal triangle.
Proof
Let A1B1C1 the cevian triangle and A2B2C2 the pedal triangle of the point
M, see fig. 5. It is well known that the circles p1 : B1AC1, p2 : C1BA1, p3 :
A1CB1 have a common point P (Miquel’s point, see [2]). We denote by
R1, R2, R3 the radii of p1, p2, p3 respectively and by A,B,C the angles of the
triangle ABC. We easily see that:

perimeterC(M) =
∑

B1C1 =
∑

2R1 · sin A (24)

perimeterP (M) =
∑

B2C2 =
∑

AM · sin A

The meaning of the sums is easily understood.
case 1.
We suppose that 6 B1PC1 = π − A > 6 B1A1C1, 6 C1PA1 = π − B >
6 C1B1A1, 6 A1PB1 = π − C > 6 A1C1B1, that is P is an interior point of
the triangle A1B1C1.

We also have:
PA + PA1 ≥ AM + MA1

or
2R1 + PA1 ≥ AM + MA1

and we see that:

∑

2R1 · sin A +
∑

PA1 · sin A ≥
∑

AM · sin A +
∑

MA1 · sin A (25)
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Figure 5:

Now we apply case (a) of the lemma to the triangle A1B1C1.
We know that :

6 B1PC1 = π − A, 6 C1PA1 = π − B, 6 A1PB1 = π − C.

and thus
∑

MA1 · sin A ≥
∑

PA1 · sin A (26)

From (25), (26) we see that:
∑

2R1 · sin A ≥
∑

AM · sin A
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that is from (24) we conclude

perimeterC(M) ≥ perimeterP (M)

.
The equality case for P=M, that is C(M)=P(M) or M=H the orthocenter.

case 2.
We suppose now that 6 B1PC1 = π − A < 6 B1A1C!. In this case is A +
6 B1A1C1 > π,and therefore the point A1 is an interior point of the circle
B1AC1.
The following inequalities are obvius.

2R1 > AM + MA1 (27)

2R2 + A1B1 ≥ A1B + A1B1 > BM + MB1 (28)

2R3 + A1C1 ≥ A1C + A1C1 > CM + MC1 (29)

We respectively multiply the above by sin A, sin B, sin C and then we add
them up. From case (b) of the lemma, we find again that perimeterC(M) >

perimeterP (M).
Remarks

The question which arises, after the solution of the above problem, is
about the relation of the area between C(M) and P(M). The remark (1) gives
the answer; that is, there are points M so that the AreaC(M) is bigger than
the AreaP(M) and for other points holds the converse. Probably, it would be
of some interest to determine the points M so that: AreaC(M)=AreaP(M).

1. Well known inequalities about the area of C(M) and P(M) are:

AreaC(M) ≤
1

4
AreaABC

see [3].

AreaP (M) ≤
1

4
AreaABC

see [4].
Also we obviously have
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AreaC(O) ≤ AreaP (O) =
1

4
AreaABC

1

4
AreaABC = AreaC(G) ≥ AreaP (G)

where O and G are the circumcenter and the centroid of ABC.
2. Our lemma can be considered as an extension of Fermat-Steiner the-
orem , see [2], about the minimum of the sum AP+BP+CP. Indeed for
φ = ω = θ = 2

3
π we have the Fermat-Steiner point.
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