The perimeters of the cevian and pedal triangle.

George Tsintsifas, Thessaloniki, Greece.

We start with a triangle $A B C$ and an interior point M. The cevians determined by M are the line segments $A A_{1}, B B_{1}, C C_{1}$ through M that join a vertex to a point on the opposite side (with A_{1} on $B C, B_{1}$, on $C A$ and C_{1} on $A B$). We call $C(M)=\triangle A_{1} B_{1} C_{1}$, the cevian triangle for M . The point M also determines a pedal triangle $P(M)=\triangle A_{2} B_{2} C_{2}$ whose vertices are the feets A_{2}, B_{2}, C_{2} of the perpendiculars dropped from M to the sides $B C, C A$ and $A B$ respectively. Problem E2716* in the American Mathematical Monthly [1] called for a proof that

$$
\text { perimeter } C(M) \geq \text { perimeter } P(M) .
$$

C.S. Gardner submitted the only solution; his argument was based on ad hoc reasoning in several cases. Some years ago I found a shorter and more analytical proof based on a lemma that seems interesting in its own right.

first Proof

Lemma

Let ABC be a triangle and ϕ, ω, θ three positive convex angles so that $\phi+\omega+\theta=2 \pi$ and M is a point of the plane of the triangle ABC . We denote

$$
F(M)=A M \cdot \sin \phi+B M \cdot \sin \omega+C M \cdot \sin \theta
$$

case (a). For $\phi \geq A, \omega \geq B, \quad \theta \geq C$ the minimum of $\mathrm{F}(\mathrm{M})$ is taken for an
internal to ABC point P so that

$$
\angle B P C=\phi, \quad \angle C P A=\omega \quad \text { and } \angle A P B=\theta
$$

Therefore we will have:

$$
\begin{equation*}
F(M) \geq F(P) \tag{1}
\end{equation*}
$$

case (b). For $\phi \leq A$, it holds:

$$
\begin{equation*}
A M \cdot \sin \phi+B M \cdot \sin \omega+C M \cdot \sin \theta \geq A B \cdot \sin \omega+A C \cdot \sin \theta \tag{2}
\end{equation*}
$$

Proof

 case (a)We are refered in an orthogonal Cartesian system O.xyz, and let: $A=\left(x_{1}, y_{1}\right), \quad B=\left(x_{2}, y_{2}\right), \quad C=\left(x_{3}, y_{3}\right), \quad M=(x, y)$.
We will have:

$$
F(M)=F(x, y)=\sum_{i=1}^{i=3} \sin \phi \sqrt{\left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2}}
$$

cyclic relative ϕ, ω, θ.
The function Fx, y is positive determined in the triangle ABC , it is continue and has derivates except the vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}$. We will find the min. of $\mathrm{F}(\mathrm{x}, \mathrm{y})$ in $\mathrm{ABC}-(\mathrm{A}, \mathrm{B}, \mathrm{C})$ and we will examine it separetely in the vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}$. Denoting by e_{1}, e_{2} the unit vectors of the Cartesian systemO.xyz, we see that:

$$
\operatorname{gradF}(x, y)=\frac{\theta F}{\theta x} \cdot e_{1}+\frac{\theta F}{\theta y} \cdot e_{2}=\sum_{i=1}^{i=3} \sin \phi \cdot \frac{\vec{r}_{1}}{r_{1}}
$$

cyclic relative ϕ, ω, θ and $\vec{r}_{1}=\overrightarrow{A M}, \vec{r}_{2}=\overrightarrow{B M}, \vec{r}_{3}=\overrightarrow{C M}$. Let now $\frac{\vec{r}_{1}}{r_{1}}=a_{0}, \frac{\vec{r}_{2}}{r_{2}}=b_{0}, \frac{\vec{r}_{3}}{r_{3}}=c_{0}$. The minimum for $\mathrm{F}(\mathrm{x}, \mathrm{y})$ is given by:

$$
\begin{equation*}
a_{0} \sin \phi+b_{0} \sin \omega+c_{0} \sin \theta=0 \tag{3}
\end{equation*}
$$

We succesively multiply the relation (1) by a_{0}, b_{0}, c_{0}. Denoting by $t_{1}=b_{0} \cdot c_{0}, \quad t_{2}=c_{0} \cdot a_{0}$ and $t_{3}=a_{0} \cdot b_{0}$ we find the system.

$$
\begin{aligned}
& \sin \phi+t_{2} \sin \omega+t_{3} \sin \theta=0 \\
& t_{1} \sin \theta+\sin \omega+t_{3} \sin \phi=0
\end{aligned}
$$

$$
t_{1} \sin \omega+t_{2} \sin \phi+\sin \theta=0
$$

The solution of the above system is easy and we take:

$$
t_{1}=b_{0} \cdot c_{0}=\cos (\omega+\theta)
$$

That is for the minimum $\mathrm{F}(\mathrm{x}, \mathrm{y})$ the point M must coincide to a point P , so that

$$
\angle B P C=2 \pi-(\omega+\theta)=\phi .
$$

Similarly we find that: $\angle C P A=\omega, \angle A P B=\theta$.
We will examine now the case $\mathrm{M}=\mathrm{A}$, that is $F(A)=b \sin \theta+c \sin \omega$
Let P the above determined point. We consider the circle BPC of radius R ' and we denote by A' the intersection of the line AP and the circle BPC. Ptolemy's inequality to the quadrilateral $\mathrm{ABA}^{\prime} \mathrm{C}$ gives:

$$
\text { c. } C A^{\prime}+b \cdot B A^{\prime} \geq\left(P A+P A^{\prime}\right) \cdot B C=P A \cdot B C+P A^{\prime} \cdot B C
$$

or

$$
2 R^{\prime} \cdot c \cdot \sin \omega+2 R^{\prime} . b \cdot \sin \theta \geq A P \cdot B C+P A^{\prime \prime \prime} \cdot B C
$$

From Ptolemy's theorem, we have:

$$
P A^{\prime} \cdot B C=B P \cdot C A^{\prime}+C P \cdot B A^{\prime}
$$

. From the above and sinus theorem we finaly take $F(A) \geq F(P)$. Similarly $F(B), F(C) \geq F(P)$.

case (b)

The proof of the inequality (2) is elementary but very interesing. Let M be a point of the plane of the triangle $A B C$. We transform the triangle AMB by a rotation of center A , angle $\pi-A$ and ratio $\frac{\operatorname{sin\omega }}{\sin \theta}$.
The triangle AMB takes the place AM'A' where C,A,A' are in the line CA with the order C-A-A' (se fig1.).We will have:

$$
\begin{equation*}
M^{\prime} A^{\prime}=B M \cdot \frac{\sin \omega}{\sin \theta} \tag{4}
\end{equation*}
$$

Figure 1:
Also in the triangle MAM' is.

$$
\frac{A M^{\prime}}{A M}=\frac{\sin \omega}{\sin \theta}, \quad \angle M A M^{\prime}=\pi-A<\pi-\phi
$$

We construct the triangle PQS so that $\mathrm{QP}=\mathrm{AM}^{\prime}, \mathrm{QS}=\mathrm{AM}$ and $\angle P Q S=\pi-\phi$. Let $\angle Q P S=\theta^{\prime}, \angle Q S P=\omega^{\prime}$. We have:

$$
\begin{gathered}
\theta^{\prime}+\omega^{\prime}=\phi \\
\frac{\sin \omega^{\prime}}{\sin \theta^{\prime}}=\frac{\sin \omega}{\sin \theta} .
\end{gathered}
$$

From the above equations we find

$$
\sin \left(\phi-\theta^{\prime}\right) \cdot \sin \theta+\sin \theta^{\prime} \cdot \sin (\phi+\theta)=0
$$

and after some manipulations we find:

$$
\pi-\theta=\theta^{\prime} \quad \text { and } \quad \pi-\omega=\omega^{\prime}
$$

The triangles MAM', SQP have: $\mathrm{AM}^{\prime}=\mathrm{QP}, \mathrm{AM}=\mathrm{QS}$ and $\angle M A M^{\prime}=\pi-A<$ $\pi-\phi=\angle P Q S$. Therefore

$$
\begin{equation*}
M M^{\prime}<P S=\frac{Q S \cdot \sin \phi}{\sin \theta}=\frac{A M \cdot \sin \phi}{\sin \theta} \tag{5}
\end{equation*}
$$

From (4) and (5) follows:

$$
B M \cdot \frac{\sin \omega}{\sin \theta}+A M \cdot \frac{\sin \phi}{\sin \theta}>A^{\prime} M^{\prime}+M^{\prime} M
$$

But,

$$
A^{\prime} M^{\prime}+M^{\prime} M+C M>A A^{\prime}+A C
$$

From the above two inequalities we take.

$$
A M \cdot \frac{\sin \phi}{\sin \theta}+B M \cdot \frac{\sin \omega}{\sin \theta}+C M>A B \frac{\sin \omega}{\sin \theta}+A C .
$$

Theorem

For every triangle ABC and an interior point M , the perimeter of the cevian triangle is bigger or equal to the perimeter of its pedal triangle.

Proof

Let $A_{1} B_{1} C_{1}$ the cevian triangle and $A_{2} B_{2} C_{2}$ the pedal triangle of the point M , see fig.2). It is well known that the circles $p_{1}: B_{1} A C_{1}, p_{2}: C_{1} B A_{1}, p_{3}$: $A_{1} C B_{1}$ have a common point P (Miquel's point, see [2]). We denote R_{1}, R_{2}, R_{3} the radii of p_{1}, p_{2}, p_{3} respectively. We easily see that:

$$
\begin{align*}
& \operatorname{perimeter} C(M)=\sum B_{1} C_{1}=\sum 2 R_{1} \sin A \tag{6}\\
& \text { perimeter } P(M)=\sum B_{2} C_{2}=\sum A M \sin A \tag{7}
\end{align*}
$$

The meaning of the sums are easily understood.
case 1. We suppose that $\angle B_{1} P C_{1}=\pi-A>\angle B_{1} A_{1} C_{1}, \quad \angle C_{1} P A_{1}=\pi-B>$ $\angle C_{1} B_{1} A_{1}, \quad \angle A_{1} P B_{1}=\pi-C>\angle A_{1} C_{1} B_{1}$, that is P is an interior point of the triangle $A_{1} B_{1} C_{1}$.

We have:

$$
P A+P A_{1} \geq A M+M A_{1}
$$

or

$$
2 R_{1}+P A_{1} \geq A M+M A_{1}
$$

and we see that:

$$
\begin{equation*}
\sum 2 R_{1} \sin A+\sum P A_{1} \sin A \geq \sum A M \sin A+\sum M A_{1} \sin A \tag{8}
\end{equation*}
$$

In this point we use the lemma for the triangle $A_{1} B_{1} C_{1}$. We know that:

$$
\angle B_{1} P C_{1}=\pi-A, \angle C_{1} P A_{1}=\pi-B, \angle A_{1} P B_{1}=\pi-C
$$

Figure 2:

Therefore:

$$
\begin{equation*}
\sum M A_{1} \sin A \geq \sum P A_{1} \sin A \tag{9}
\end{equation*}
$$

From (8), (9) we see that:

$$
\sum 2 R_{1} \sin A \geq \sum A M \sin A
$$

that is from (6),(7) we conclude

$$
\text { perimeter } C(M) \geq \text { perimeter } P(M)
$$

The equality case for $\mathrm{P}=\mathrm{M}$, that is $\mathrm{C}(\mathrm{M})=\mathrm{P}(\mathrm{M})$ or $\mathrm{M}=\mathrm{H}$ the orthocenter.
case 2..We suppose now that $\angle B_{1} P C_{1}=\pi-A<\angle B_{1} A_{1} C_{!}$. In this case is $A+\angle B_{1} A_{1} C_{1}>\pi$, therefore the point A_{1} is an interior point of the circle $B_{1} A C_{1}$.
The following inequalities are obvius.

$$
\begin{gather*}
2 R_{1} \geq A M+M A_{1} \tag{10}\\
2 R_{2}+A_{1} B_{1} \geq A_{1} B+A_{1} B_{1} \geq B M+M B_{1} \tag{11}\\
2 R_{3}+A_{1} C_{1} \geq A_{1} C+A_{1} C_{1} \geq C M+M C_{1} \tag{12}
\end{gather*}
$$

We multiplay the above respectively by $\sin A, \sin B, \sin C$. Adding, from the lemma case (b)., we find again that perimeter $C(M) \geq \operatorname{perimeter} P(M)$.

second Proof

Lemma

Let $A_{1} B_{1} C_{1}$ be a triangle and ϕ, ω, θ are three positive convex angles so that:

$$
\begin{equation*}
\phi+\omega+\theta=2 \pi . \tag{13}
\end{equation*}
$$

For an interior point M the minimum of

$$
\begin{equation*}
Q(M)=A_{1} M \cdot \sin \phi+B_{1} M \cdot \sin \omega+C_{1} M \cdot \sin \theta \tag{14}
\end{equation*}
$$

is taken
case (a):
For $\phi \geq \angle B_{1} A_{1} C_{1}, \quad \omega \geq \angle C_{1} B_{1} A_{1}, \quad \theta \geq \angle A_{1} C_{1} B_{1}$.
in the unique position of the point $\mathrm{M}=\mathrm{P}$ so that:

$$
\angle B_{1} P C_{1}=\phi, \quad \angle C_{1} P A_{1}=\omega, \quad \angle A_{1} P B_{1}=\theta .
$$

Therefore it holds: $\quad Q(M) \geq A_{1} P \cdot \sin \phi+B_{1} P \cdot \sin \omega+C_{1} P \cdot \sin \theta$. case (b):
For $\phi<\angle B_{1} A_{1} C_{1}$, it holds:

$$
Q(M) \geq B_{1} A_{1} \cdot \sin \omega+C_{1} A_{1} \cdot \sin \theta
$$

Proof of the case (a).

Figure 3:
We accept the following notation. The circle which in a chord $L Y$ accepts an angle equal to θ is denoted by: $(L Y, \theta)$.
We consider the circles $q_{1}:\left(B_{1} C_{1}, \phi\right), q_{2}:\left(C_{1} A_{1}, \omega\right), q_{3}:\left(A_{1} B_{1}, \theta\right)$. The circles have a common point P , see fig. 3. So we have: $\angle B_{1} P C_{1}=\phi, \angle C_{1} P A_{1}=\omega$, and $\angle A_{1} P B_{1}=\theta$. The line $A_{1} P$ intersects q_{1} at the point A_{1}^{\prime}. We easily see that:
$\angle B_{1} A_{1}^{\prime} C_{1}=\pi-\phi, \angle C_{1} B_{1} A_{1}^{\prime}=\angle A_{1}^{\prime} P C_{1}=\pi-\omega, \angle A_{1}^{\prime} C_{1} B_{1}=\angle A_{1}^{\prime} P B_{1}=\pi-\theta$
Ptolemy's theorem for the inscribed quadrilaterar $P B_{1} A_{1}^{\prime} C_{1}$ gives:

$$
\begin{equation*}
P A_{1}^{\prime} \cdot B_{1} C_{1}=P B_{1} \cdot C_{1} A_{1}^{\prime}+P C_{1} \cdot B_{1} A_{1}^{\prime} . \tag{16}
\end{equation*}
$$

From (15),(16) and the sinus theorem applied to the triangle $A_{1}^{\prime} B_{1} C_{1}$ we get:

$$
\begin{equation*}
P A_{1}^{\prime} \cdot \sin \phi=P B_{1} \cdot \sin \omega+P C_{1} \cdot \sin \theta \tag{17}
\end{equation*}
$$

For every point M not belonging to q_{1}, Ptolemy's inequality asserts:

$$
\begin{equation*}
M A_{1}^{\prime} \cdot B_{1} C_{1}<M B_{1} \cdot C_{1} A_{1}^{\prime}+M C_{1} \cdot B A_{1}^{\prime} \tag{18}
\end{equation*}
$$

or,

$$
\begin{equation*}
M A_{1}^{\prime} \cdot \sin \phi<M B_{1} \cdot \sin \omega+M C_{1} \cdot \sin \theta \tag{19}
\end{equation*}
$$

Supposing that M does not belong to $A_{1} A_{1}^{\prime}$, we see that:

$$
\begin{equation*}
A_{1} M+M A_{1}^{\prime}>A P+P A_{1}^{\prime} \tag{20}
\end{equation*}
$$

or from $(17),(18),(19)$ and (20) follows:

$$
\begin{equation*}
A_{1} M+B_{1} M \frac{\sin \omega}{\sin \phi}+C_{1} M \frac{\sin \theta}{\sin \phi}>A_{1} P+B_{1} P \frac{\sin \omega}{\sin \phi}+C_{1} P \frac{\sin \theta}{\sin \phi} . \tag{21}
\end{equation*}
$$

and our lemma case (a) is proved. Obviously we have equality for $M=P$. Proof of the case (b).
Let M be a point of the triangle $A_{1} B_{1} C_{1}$. We transform the triangle $A_{1} M B_{1}$ by a rotation of center A_{1}, angle $\pi-\angle B_{1} A_{1} C_{1}$ and ratio $\frac{\operatorname{sin\omega } \omega}{\sin \theta}$.
The triangle $A_{1} M B_{1}$ takes the place $A_{1} M^{\prime} A_{1}^{\prime}$ where $C_{1}, A_{1}, A_{1}^{\prime}$ are on the line $C_{1} A_{1}$ in the order $C_{1}-A_{1}-A_{1}^{\prime}$ (se fig4.).We have:

$$
\begin{equation*}
M^{\prime} A_{1}^{\prime}=B_{1} M \frac{\sin \omega}{\sin \theta} \tag{22}
\end{equation*}
$$

Also in the triangle $M A_{1} M^{\prime}$ occurs.

$$
\frac{A_{1} M^{\prime}}{A_{1} M}=\frac{\sin \omega}{\sin \theta}, \quad \angle M A_{1} M^{\prime}=\pi-A_{1}<\pi-\phi
$$

Figure 4:

We construct the triangle PQS so that $Q P=A_{1} M^{\prime}, Q S=A_{1} M$ and $\angle P Q S=\pi-\phi$.
Let $\angle Q P S=\theta^{\prime}, \angle Q S P=\omega^{\prime}$. We have:

$$
\begin{gathered}
\theta^{\prime}+\omega^{\prime}=\phi, \\
\frac{\sin \omega^{\prime}}{\sin \theta^{\prime}}=\frac{\sin \omega}{\sin \theta} .
\end{gathered}
$$

From the above equations we find

$$
\sin \left(\phi-\theta^{\prime}\right) \cdot \sin \theta+\sin \theta^{\prime} \cdot \sin (\phi+\theta)=0
$$

and after some elementary calculations we take:

$$
\pi-\theta=\theta^{\prime} \quad \text { and } \quad \pi-\omega=\omega^{\prime}
$$

The triangles $M A_{1} M^{\prime}, \quad S Q P$ we have: $A_{1} M^{\prime}=Q P, \quad A_{1} M=Q S$ and $\angle M A_{1} M^{\prime}=\pi-A_{1}<\pi-\phi=\angle P Q S$. Hence

$$
\begin{equation*}
M M^{\prime}<P S=\frac{Q S \cdot \sin \phi}{\sin \theta}=\frac{A_{1} M \cdot \sin \phi}{\sin \theta} . \tag{23}
\end{equation*}
$$

From (22) and (23) follows:

$$
B_{1} M \frac{\sin \omega}{\sin \theta}+A_{1} M \frac{\sin \phi}{\sin \theta}>A_{1}^{\prime} M^{\prime}+M^{\prime} M
$$

and together with

$$
A_{1}^{\prime} M^{\prime}+M^{\prime} M+C_{1} M>A_{1} A_{1}^{\prime}+A_{1} C_{1}
$$

we get.

$$
A_{1} M \frac{\sin \phi}{\sin \theta}+B_{1} M \frac{\sin \omega}{\sin \theta}+C_{1} M>A_{1} B_{1} \frac{\sin \omega}{\sin \theta}+A_{1} C_{1}
$$

Theorem

For every triangle ABC and an interior point M , the perimeter of the cevian triangle is not less than the perimeter of its pedal triangle.

Proof

Let $A_{1} B_{1} C_{1}$ the cevian triangle and $A_{2} B_{2} C_{2}$ the pedal triangle of the point M , see fig. 5 . It is well known that the circles $p_{1}: B_{1} A C_{1}, p_{2}: C_{1} B A_{1}, p_{3}$: $A_{1} C B_{1}$ have a common point P (Miquel's point, see [2]). We denote by R_{1}, R_{2}, R_{3} the radii of p_{1}, p_{2}, p_{3} respectively and by A, B, C the angles of the triangle ABC. We easily see that:

$$
\begin{align*}
& \text { perimeter } C(M)=\sum B_{1} C_{1}=\sum 2 R_{1} \cdot \sin A \tag{24}\\
& \text { perimeter } P(M)=\sum B_{2} C_{2}=\sum A M \cdot \sin A
\end{align*}
$$

The meaning of the sums is easily understood.

case 1.

We suppose that $\angle B_{1} P C_{1}=\pi-A>\angle B_{1} A_{1} C_{1}, \quad \angle C_{1} P A_{1}=\pi-B>$ $\angle C_{1} B_{1} A_{1}, \quad \angle A_{1} P B_{1}=\pi-C>\angle A_{1} C_{1} B_{1}$, that is P is an interior point of the triangle $A_{1} B_{1} C_{1}$.

We also have:

$$
P A+P A_{1} \geq A M+M A_{1}
$$

or

$$
2 R_{1}+P A_{1} \geq A M+M A_{1}
$$

and we see that:

$$
\begin{equation*}
\sum 2 R_{1} \cdot \sin A+\sum P A_{1} \cdot \sin A \geq \sum A M \cdot \sin A+\sum M A_{1} \cdot \sin A \tag{25}
\end{equation*}
$$

Figure 5:

Now we apply case (a) of the lemma to the triangle $A_{1} B_{1} C_{1}$.
We know that :

$$
\angle B_{1} P C_{1}=\pi-A, \angle C_{1} P A_{1}=\pi-B, \angle A_{1} P B_{1}=\pi-C .
$$

and thus

$$
\begin{equation*}
\sum M A_{1} \cdot \sin A \geq \sum P A_{1} \cdot \sin A \tag{26}
\end{equation*}
$$

From (25), (26) we see that:

$$
\sum 2 R_{1} \cdot \sin A \geq \sum A M \cdot \sin A
$$

that is from (24) we conclude

$$
\text { perimeter } C(M) \geq \text { perimeter } P(M)
$$

The equality case for $P=M$, that is $C(M)=P(M)$ or $M=H$ the orthocenter.

case 2.

We suppose now that $\angle B_{1} P C_{1}=\pi-A<\angle B_{1} A_{1} C_{!}$. In this case is $A+$ $\angle B_{1} A_{1} C_{1}>\pi$, and therefore the point A_{1} is an interior point of the circle $B_{1} A C_{1}$.
The following inequalities are obvius.

$$
\begin{gather*}
2 R_{1}>A M+M A_{1} \tag{27}\\
2 R_{2}+A_{1} B_{1} \geq A_{1} B+A_{1} B_{1}>B M+M B_{1} \tag{28}\\
2 R_{3}+A_{1} C_{1} \geq A_{1} C+A_{1} C_{1}>C M+M C_{1} \tag{29}
\end{gather*}
$$

We respectively multiply the above by $\sin A, \sin B, \sin C$ and then we add them up. From case (b) of the lemma, we find again that perimeter $C(M)>$ perimeter $P(M)$.

Remarks

The question which arises, after the solution of the above problem, is about the relation of the area between $C(M)$ and $P(M)$. The remark (1) gives the answer; that is, there are points M so that the $\operatorname{AreaC}(\mathrm{M})$ is bigger than the $\operatorname{AreaP}(\mathrm{M})$ and for other points holds the converse. Probably, it would be of some interest to determine the points M so that: $\operatorname{AreaC}(\mathrm{M})=\operatorname{AreaP}(\mathrm{M})$.

1. Well known inequalities about the area of $\mathrm{C}(\mathrm{M})$ and $\mathrm{P}(\mathrm{M})$ are:

$$
\operatorname{AreaC}(M) \leq \frac{1}{4} \text { AreaABC }
$$

see [3].

$$
\operatorname{AreaP}(M) \leq \frac{1}{4} \operatorname{AreaABC}
$$

see [4].
Also we obviously have

$$
\begin{aligned}
& \operatorname{Area} C(O) \leq \operatorname{Area} P(O)=\frac{1}{4} \operatorname{AreaABC} \\
& \frac{1}{4} \operatorname{AreaABC}=\operatorname{AreaC}(G) \geq \operatorname{Area} P(G)
\end{aligned}
$$

where O and G are the circumcenter and the centroid of ABC .
2. Our lemma can be considered as an extension of Fermat-Steiner theorem, see [2], about the minimum of the sum $\mathrm{AP}+\mathrm{BP}+\mathrm{CP}$. Indeed for $\phi=\omega=\theta=\frac{2}{3} \pi$ we have the Fermat-Steiner point.

References

1. Jack Garfunkel,problem E 2716*. Amer.Math.Monthly 85:5 (may 1978) p.384; Solution by C.S.Gardner in 89:8 (October 1982) pp. 594-598.
2. R. Johnson, Advanced Euclidean Geometry,Dover publ., N.Y. 1960. theorem 184, page 131.
3. D.S.Mitrinovic, J.E.Pecaric, V.Volonec, Recent Advances in Geometric Inequalities,Kluwer Academic Publ. 2.46 page 502
4. O.Bottema, R.Djordjevic, R.Janic, D. Mitrinovic, P.Vasic, Geometric Inequalities, Wolters-Noordhoff Publ. 19699.5 page 131.

George Tsintsifas
23 Platonos str.
54631 Thessaloniki
Greece
e.mail: gtsintsifas@yahoo.com

