Max. and Min. problems for the Tetrahedron.

G. A. Tsintsifas

One of the most famous problem in Geometry is the isoperimetric problem, that is:
Of all plane simple (wihtout double points) closed curves with the same length, which one has the max. area.
Several ingenious proofs (especially Steiner's proof) appeared. At first was felt that the problem was solved, later it was understood that the existance problem had been omited. The theory of Convex sets contributed a satisfactory solution to many problems of this kind.
The solution for the general isoperimetrc problem in E_{n} is given by the inequality

$$
\left(\frac{S}{\omega_{n}}\right)^{n} \geq\left(\frac{V}{k_{n}}\right)^{n-1}
$$

Where S the "perimeter" and V the volume of the body F, k_{n} the volume and ω_{n} the "perimeter" of the unit sphere in E^{n}.
For E_{3} the inequality is

$$
\left(\frac{S}{4 \pi R^{2}}\right)^{3} \geq\left(\frac{V}{4 / 3 \pi R^{3}}\right)^{2}
$$

and for E^{2}

$$
S^{2} \geq 4 \pi V
$$

The problem of determing among all polyhedra which one has the max volume for a given surface is difficult and is solved for only some cases.
In this paper we will try to give some answers for the tetrehdron and will see the problem of the max. and min. of the tetrahedron circumscribed on a sphere and inscribed in a sphere.

Proposition 1

The tetrahedron $A B C D$ has constand volume $V=Q^{3}$ and constand basis $B C D$. The minimum of the surface $S=(A B C)+(A C D)+A D B)$ is taken, when the projection of the vertex A to the triangle $B C D$ is the incenter of that triangle.

Proof

Let $A K$ the perpendicular from A to the plane $B C D$. It is easy to see that the point K will be inside of the triangle $B C D$. Therefore, according the standard theorems of Analysis, see [2], the min. S exists.
We drop $K E, K Z, K H$ the perpediculars from K to the sides $B C, C D, D B$ of the triangle $B C D$ respectively. We see that $A E, A Z, A H$ are the altitudes of the triangles $A B C, A C D, A D B$ respectively. So we will have:

$$
2 S=(A B C)+(A C D)+(A B D)=A E \cdot B C+B Z \cdot C D+A H \cdot B D
$$

For simplicity we will denote:

$$
A K=h, K E=a_{1}, K Z=a_{2}, K H=a_{3}, B C=b_{1}, C D=b_{2}, D B=b_{3}
$$

Therefore

$$
2 S=b_{1} \sqrt{h^{2}+a_{1}^{2}}+b_{2} \sqrt{h^{2}+a_{2}^{2}}+b_{3} \sqrt{h^{2}+a_{3}^{2}}
$$

or

$$
2 S=\sum_{i=1}^{3} \sqrt{h^{2} b_{i}^{2}+a_{i}^{2} b_{i}^{2}}
$$

From Minkowski inquality have:

$$
\begin{equation*}
2 S \geq \sqrt{h^{2}\left(b_{1}+b_{2}+b_{3}\right)^{2}+\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)^{2}} \tag{1}
\end{equation*}
$$

Hence

$$
2 S \geq \sqrt{h^{2}\left(b_{1}+b_{2}+b_{3}\right)^{2}+4(B C D)^{2}}
$$

Therefore

$$
\min . S=\frac{1}{2} \sqrt{h^{2}\left(b_{1}+b_{2}+b_{3}\right)^{2}+4(B C D)^{2}}
$$

The condition for the equality, according Minkowski inequality is:

$$
\begin{equation*}
\frac{h b_{1}}{a_{1} b_{1}}=\frac{h b_{2}}{a_{2} b_{2}}=\frac{h b_{3}}{a_{3} b_{3}} \tag{2}
\end{equation*}
$$

That is $a_{1}=a_{2}=a_{3}$. So the point K must be the incenter of $B C D$. From the above we conclude that the triangles $A K E, A K Z, A K H$ are equal, hence the dihedral angles $B C, C D, D B$ are equal.
Now using contradiction we can prove that all the dihedral of the min. S tetrahedron must be equal. It a simple problem to prove that the tetrahedron with all the dihedrons equal is the regular. Suppose that $A_{1}, B_{1}, C_{1}, D_{1}$ are the common points of the insphere with the facets. From the equal dihedral angles we see that $A_{1} B_{1} C_{1} D_{1}$ is a regular tetrahedron and obviosly the $A B C D$ is regular. Accordingly as immediate consequance is the
Theorem 1
From the tetrahedrons with the same volume, the min. surface has the regular.
Theorem 2
From the tetrahedrons with the same surface F the max. volume has the regular.
In this proof and in next proofs we can accept for the existance problem the standart theorems from the Analysis. Now, let $A_{1} B_{1} C_{1} D_{1}$ is a non regular tetrahedron with constand surface F and volume V. From the Thorem 1 follows that we can find a tetrahedron $A_{0} B_{0} C_{0} D_{0}$ with the same volume V and a bigger surface than $A_{1} B_{1} C_{1} D_{1}$. That is a contradiction.

The next problem is about the min.volume of the tetrahedrons circumscribed to a given sphere. For the solution we wll need three propositions.

Proposition 2

The point P is in the interior of the trihedral angle $A X Y Z$. The plane through the point P, intersecting from the trihedral a tetrahedron $A B C D$ of min. volume, has as barycenter of the triangle $B C D$ the point P.
Proof
Let $A B C D$ the tetrahdron so that: B, C, D are in $A X, A Y, A Z$ respectively and p_{1}, p_{2}, p_{3} the distances of P from the planes $A C D, A B D, A B C$ respectively. Also

$$
\begin{gathered}
A B=l_{1}, A C=l_{2}, A C=l_{3}, C D=b_{1}, D B=b_{2}, B C=b_{3} \\
(A C D)=a_{1},(A D B)=a_{2},(A B C)=a_{3},(A B C D)=V
\end{gathered}
$$

We will have:

$$
3 V=a_{1} p_{1}+a_{2} p_{2}+a_{3} p_{3}
$$

From AM-GM inequality, follows that

$$
\begin{equation*}
V \geq \sqrt[3]{a_{1} a_{2} a_{3} p_{1} p_{2} p_{3}} \tag{3}
\end{equation*}
$$

The equality when:

$$
\begin{equation*}
a_{1} p_{1}=a_{2} p_{2}=a_{3} p_{3} \tag{4}
\end{equation*}
$$

The above (4) gives the qualitative solution of the problem. That is the min. V is optained from the equality of the volumes $(P A C D),(P A D B),(P A B C)$. We easily can find the above min. $\operatorname{Vol}(A B C D)$, but we need the following simple lemma
lemma
For the trihedral angle $A X Y Z$ and the B, C, D on the lines $A X, A Y, A Z$ holds:

$$
\begin{equation*}
\frac{V o l(A B C D)}{A B \cdot A C \cdot A D}=k \quad \text { constand } \tag{5}
\end{equation*}
$$

Indeed, for B_{0}, C_{0}, D_{0} constand points on $A X, A Y, A Z$ we have:

$$
\frac{V o l(A B C D)}{A B \cdot A C \cdot A D}=\frac{V o l\left(A B_{0} C_{0} D_{0}\right)}{A B_{0} \cdot A C_{0} \cdot A D_{0}}=k \quad \text { constand }
$$

We denote $\sin \angle C A D=k_{1}, \quad \sin \angle D A B=k_{2}, \quad \sin \angle B A C=k_{3}$ so from (4) and (5) follows

$$
k_{3} p_{3} l_{1} l_{2}+k_{1} p_{1} l_{2} l_{3}+k_{2} p_{2} l_{1} l_{3}=l_{1} l_{2} l_{3} . k_{1}
$$

therefore

$$
\begin{equation*}
\frac{k_{1} p_{1}}{l_{1}}+\frac{k_{2} p_{2}}{l_{2}}+\frac{k_{3} p_{3}}{l_{3}}=k \tag{6}
\end{equation*}
$$

Also from (4)

$$
\begin{equation*}
l_{2}=\frac{l_{1} k_{2} p_{2}}{k_{1} p_{1}}, \quad l_{3}=\frac{l_{1} k_{3} p_{3}}{k_{1} p_{1}} \tag{7}
\end{equation*}
$$

From (6),(7) we take

$$
l_{1}=\frac{3 k_{1} p_{1}}{k}, \quad l_{2}=\frac{3 k_{2} p_{2}}{k}, \quad l_{3}=\frac{3 k_{3} p_{3}}{k}
$$

That is the triangle $B C D$ is determined and the volume min. V from (3) follows.

$$
\min . V=9 \frac{p_{1} p_{2} p_{3}}{k^{2}} \sqrt[3]{k_{1}^{2} k_{2}^{2} k_{3}^{2}}
$$

Proposition 2

Inside of the trihedral angle $A X Y Z$ there is a sphere (O, R). A tangent plane p to the sphere at a point P intersects the lines $A X, A Y, A Z$ at the points B, C, D respectively. The min.of the volume of the tetrahedron $A B C D$ is taken for $P=$ the centroid of the triangle $B C D$.
The proof is easy and is the same for the plane.

Let $B C$ the tangent to the circle (c) at the point P so that $B P=P C$ (in $\left.E^{3}\right) \mathrm{P}$ will be the centroid that is the middle point of $B C$. The triangle $A B C$ is the min. A second tangent to the circle intersects te sides $A X, A Y$ at the points D^{\prime}, E^{\prime} respectively. We drow through P the parallel to $D^{\prime} E^{\prime}$ which intersects $A X, A Y$ at the points D, E. We have. $(A B C) \leq(A D E) \leq\left(A D^{\prime} E^{\prime}\right)$ From the above, using contradiction (reductio ab absoredium) we can prove that if a tetrahedron circumscribed to a sphere (O, r) has the tangents points the centroid of the faces, then the tetrahedron is regular.
We need the Euler's inequality. For the tetrahedron holds:

$$
R \geq 3 r, \quad \text { where } \quad r=\text { inradius }, \quad \text { For } \quad E^{n} \quad R \geq n r
$$

For the proof it is enough to take the pericenter as interior point of the tetrahedron.
Let $h_{a}, h_{b}, h_{c}, h_{d}$ the altitudes of the tetrahedron $A B C D$ and $O A^{\prime}, O B^{\prime}, O C^{\prime}, O D^{\prime}$ the distances of the point O from the faces $B C D, A C D, A B D, A B C$. Obviously have:

$$
\begin{aligned}
& R+O A^{\prime} \geq h_{a} \\
& R+O B^{\prime} \geq h_{b} \\
& R+O C^{\prime} \geq h_{c} \\
& R+O D^{\prime} \geq h_{d}
\end{aligned}
$$

We multiplay the above inequalities succesively by $(B C D),(A C D),(A B D,(A B C)$ and summing the inequalities we find.

$$
S R+3 V \geq 12 V
$$

or

$$
S R \geq 3 S r
$$

where S the surface and V the volume. The equality $R=3 r$ only if all the above inequalities are equalities, that is the tetrahedron must be regular. The proof for E^{n} is the same.
We suppose that the tangent points $A_{1}, B_{1}, C_{1}, D_{1}$ of the faces of the tetrahedron $A B C D$ with the inscribed sphere (O, r) are the centroids of the faces respectively and G the centroid of the tetrahedron $A B C D$ The line $O G$ intersects the altitude $A H$ at the point O_{1}. The triangles $A O_{1} G$ and $A_{1} O G$ are similar, therefore:

$$
\frac{A O_{1}}{O A}=\frac{A G}{G A_{1}}=3
$$

hence $A O_{1}=3 r$. That is $O_{1}=O$. Also $R=3 r$ and accordly the previous proof the tetrahedron $A B C D$ must be regular. We now can say that we have proved that:

Therem 3

The minimum circumscribed tetrahedron to a sphere is the regular.

Theorem 4

The regular tetrahedron has the min. surface from all the tetrahedrons circumscibed to a given sphere.

The proof is based in the in theorem 3. The formula of the volume is $(A B C D)=\frac{1}{3} r S$ where S the surface of $A B C D$. The volume is min. for the regular, that is min. S for the regular tetrahedron.
In the sequel we will prove two useful propositions in order to study similar problems.

Proposition a

We assume that the tetrahedron $A B C D$ does not inglude the pericenter. Then we can find a tetrahedron $A^{\prime} B C D$ with bigger volume, bigger surface and bigger inradius.We suppose that the plane $B C D$ intrsects the segmant $O A$ where O the pericenter. Let $A^{\prime} B C D$ the symmetric of the cap $A B C D$ with regard to the plane $B C D$ and A^{\prime} the symmetric of the point A. The half- line $A A^{\prime}$ intersects the sphere to the point A ". The tetrahedron $A " B C D$ has bigger volume,surface and circuradius.

Proposition 2

The inradius of the regular tetrahedron is $r=\frac{R}{3}$, where (O, R) is the circumsphere. So, for the inscribed tetrahedron $A B C D$ with distances from the pericenter to the faces $p_{a}, p_{b}, p_{c}, p_{d}$, both the followin cases
(1) $p_{a}, p_{b}, p_{c}, p_{d}<\frac{R}{3}$
(2) $p_{a}, p_{b}, p_{c}, p_{d}>\frac{R}{3}$
are impossible. The proof is easy.

Theorem 5

The regular tetrahdron has the max.volume from all the tetrahedrons inscribed in the same sphere.

Proof

We suppose that the tetrahedron $A B C D$ is inscribed in the sphere (O, R). Let p the parallel plane tangent to the sphere at the point A^{\prime}. We choose p so that A, A^{\prime} be in the same part with regard p. Obviously volume $\left(A^{\prime} B C D\right) \geq$ $(A B C D)$, equality only for $A=A^{\prime}$.
We procced now by contradiction. We suppose that a no regular tetrahedron $A B C D$ has the max.volume and $A B<A C$. The plane q through A parallel to $B C D$ is no tangent to the sphere. To see this, we considere the plane $A B C$ which intersects the sphere to the circle $A B C$. The intersection of the plane q with the circle $A B C$ is a segment.

Theorem 6

The regular tetrahedron inscribed in a sphere (O, R) has the max.surface from all the inscribed tetrahedrons.

Proof

Let $P=A B C D$ an inscribed tetrahedron, $P_{1}=A_{1} B_{1} C_{1} D_{1}$ the circumscribed tetrahedron with the faces respectively parallel to P and $P_{0}=A_{0} B_{0} C_{0} D_{0}$ the regular tetrahedron circumscribed to the sphere (O, R). We denote by $S(Q)$ the surface of the tetrahedron Q. The tetrahedrons P and P_{1} are similar with ratio $\frac{r}{R}$. That is because r is the inradius of P and R the inradius of P_{1}. Therefore we will have:

$$
\frac{S(P)}{S\left(P_{1}\right)}=\frac{r^{2}}{R^{2}}
$$

From the well known inequality of Euler and theorem 4 we have:

$$
\begin{aligned}
\frac{r}{R} & \leq \frac{1}{3} \\
S\left(P_{1}\right) & \leq S\left(P_{0}\right)
\end{aligned}
$$

Hence, from the above follows

$$
S(P) \leq \frac{1}{9} S\left(P_{0}\right)
$$

So the conclusion follows. The inscribed tetrahdron with max surface is the regular.
$2^{\text {nd }}$ Proof
In a triangle $A B C$ holds

$$
\begin{equation*}
a^{2}+b^{2}+c^{2} \geq 4 E \sqrt{3} \tag{8}
\end{equation*}
$$

where a, b, c the sides and E the area.
Indeed, we know from the elementary Geometry that

$$
a^{2}+b^{2}+c^{2}=4 E(\cot A+\cot B+\cot C)
$$

but

$$
\cot A+\cot B+\cot C \geq \sqrt{3}
$$

so ,the inequality (8) holds. Equality for $A B C$ equilateral.
In the tetrahedron $A B C D$ inscribed in the sphere (O, R), we denote:

The edges $D A, D B, D C$ by $a^{\prime}, b^{\prime}, c^{\prime}$ and $A B, B C, C A$ by c, a, b.
We use (8) for the four triangles faces of $A B C D$ and we take.

$$
\begin{equation*}
2\left(a^{2}+b^{2}+c^{2}+a^{\prime 2}+b^{\prime 2}+c^{\prime 2}\right) \geq 4 F \sqrt{3} \tag{9}
\end{equation*}
$$

where $F=\sum_{1}^{4} E_{i}$, and E_{i} the area of the faces.
Now we use the formula of Leibniz

$$
m\left[\sum_{1}^{n+1} m_{i}\left|P A_{i}\right|^{2}\right]=m^{2}|P Q|^{2}+\sum_{i>j}^{n+1} m_{i} m_{j}\left|A_{i} A_{j}\right|^{2}
$$

where $A_{i}\left(m_{i}\right)$ points with masses m_{i}. The center of mass is $Q=\frac{\sum m_{i} A_{i}}{m}$ $m=\sum m_{i}$ and $\quad P$ is some point.
For $P=O$ (circumcenter), $m_{i}=1$, we take:

$$
\begin{equation*}
4^{2} R^{2} \geq a^{2}+b^{2}+c^{2}+a^{\prime 2}+b^{\prime 2}+c^{\prime 2} \tag{10}
\end{equation*}
$$

From (9) and (10) follows

$$
8 R^{2} \geq F \sqrt{3}
$$

That is:

$$
\max . F=\frac{8 R^{2}}{\sqrt{3}}
$$

hence, the equality for the regular tetrahedron, as follows from (8) and (10) $3^{\text {rd }}$ Proof
The bissectors planes of the dihedral angles $A B, A C$ and $A D$ passe through a line intersecting the plane $A B C$ to the point K. The point K has equal distances from the planes of the trihedral angle $A B C D$.Let $K L_{1}$ the distance of K from the plane $A C D, A H=h_{a}$ the altitude from $A, A A_{1}$ the altitude from A to the triangle $A C D$ and $K K_{1}$ the distance fom K the distance from K to $C D$

We have

$$
(A K C D)=1 / 3(A C D) \cdot K L_{1} \quad(A K C D)=1 / 3 \cdot h_{a} \cdot(K C D)
$$

From the above, follows:

$$
\frac{K L_{1}}{h_{a}}=\frac{(K C D)}{(A C D)}
$$

As above we drow $K K_{2}, K K_{3}$ perpendiculars to $B D, B C$ and $A A_{2}, A A_{3}$ perpendiculars to $B D, B C$. It no difficult to see that

$$
\frac{A A_{1}}{K K_{1}}=\frac{A A_{2}}{K K_{2}}=\frac{A A_{3}}{K K_{3}}=p
$$

and

$$
\frac{(A C D)}{(K D C)}=\frac{A B D)}{(K B D)}=\frac{(A C B)}{(B C D)}=\frac{(A C D)+(A B D)+(A C B)}{(B C D)}=p
$$

Setting

$$
S=(A C D)+A B D)+(A B C)
$$

we have

$$
S=p(B C D)
$$

Also

$$
(K A C D)=1 / 3 K L_{1} \cdot(A C D), \quad(A K C D)=1 / 3 A H \cdot(K C D)
$$

therefore

$$
\frac{A H}{K L_{1}}=\frac{(A C D)}{(K C D)}=\frac{C D \cdot A A_{1}}{C D \cdot K K_{1}}=\frac{A A_{1}}{K K_{1}}=p
$$

The incenter the $A B C D$ is the point I in the segment $A K$. We denote by $l_{1}, l_{2}, l_{3}, l_{4}$ the barycentric coordinates of I. We have $l_{i} \geq 0, \sum l_{i}=1$. also

$$
\begin{gathered}
\frac{r}{h_{a}}=l_{1} \frac{1}{p}=\frac{K L_{1}}{A H}=\frac{l_{1}}{r} . K L_{1} \\
\frac{r}{K L_{1}}=p l_{1} \\
\frac{r}{K L_{1}}=1-l
\end{gathered}
$$

that is

$$
p=\frac{l_{2}+l_{3}+l_{4}}{l_{1}}
$$

We considere the rerpendicular $O M$ from the pericenter O to the $B C D$. The line $M O$ intersects the circumsphere to the point M. We can suppose tho point O in the interior of the $A B C D$ and $O M \geq \frac{R}{3}$, we have:

$$
\frac{A I}{I K}=\frac{l_{2}+l_{3}+l_{4}}{l_{1}}=\frac{h_{a}-r}{r}=\frac{h_{a}}{r}-1 \leq \frac{M M^{\prime}}{r}-1
$$

That is

$$
\frac{A I}{I K} \leq \frac{R+O M}{O M}-1=\frac{R}{O M}+1-1=\frac{R}{O M} \leq 3
$$

Hence

$$
S \leq 3(B C D)
$$

Thus for $B C D=$ constand the $\max S$ is $3(B C D)$. That is for $A \Rightarrow M^{\prime} p$ is increasing. The Max when $A=M^{\prime}$. The Max of the surface of $A B C D$ when $B C D$ equilateral, that is $A B C D$ regular

The last part of this paper is a theorem about the sum of the edges of the tetrahedron $A B C D$.

Theorem 7

The regular tetrahedron has the max. of the sum of edges of the tetrahedrons inscribed in a sphere (O, R)

Proof

Let $A B C D$ be an iscribed tetrahedron in (O, R) and $a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$ the edges (see the second proof of the thorem 5).
From (10) follows that

$$
4 \sqrt{6} \cdot R \geq \sqrt{6} \sqrt{a^{2}+b^{2}+c^{2}+a^{\prime 2}+b^{\prime 2}+c^{\prime 2}}
$$

hence

$$
6 a_{0} \geq a+b+c+a^{\prime}+b^{\prime}+c^{\prime}
$$

where a_{0} the edge of the regular tetrahedron.

Bibliography

1.Apostol T. M. Analysis,Addison-Wesley.
2. Keneth A. Ross, Elementary Analysis, Springer.
3. N. A. Court, Modern Pure Solid Geometry Chelsea.

4 G. Tsintsifas, Solid Geometry
5. M. S. Klamkin, G. Tsintsifas, The circumradius-inradius Inequality, Math. Magazine Vol 52, $N^{0} 1$ p20-23

