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One of the most famous problem in Geometry is the isoperimetric prob-
lem, that is:
Of all plane simple (wihtout double points) closed curves with the same
length, which one has the max. area.
Several ingenious proofs ( especially Steiner’s proof) appeared. At first was
felt that the problem was solved, later it was understood that the existance
problem had been omited. The theory of Convex sets contributed a satisfac-
tory solution to many problems of this kind.
The solution for the general isoperimetrc problem in En is given by the in-
equality (

S

ωn

)n

≥
(
V

kn

)n−1

Where S the ”perimeter” and V the volume of the body F , kn the volume
and ωn the ”perimeter” of the unit sphere in En.
For E3 the inequality is (

S

4πR2

)3

≥
(

V

4/3πR3

)2

and for E2

S2 ≥ 4πV

The problem of determing among all polyhedra which one has the max vol-
ume for a given surface is difficult and is solved for only some cases.
In this paper we will try to give some answers for the tetrehdron and will
see the problem of the max. and min. of the tetrahedron circumscribed on
a sphere and inscribed in a sphere.
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Proposition 1
The tetrahedron ABCD has constand volume V = Q3 and constand basis
BCD. The minimum of the surface S = (ABC) + (ACD) +ADB) is taken,
when the projection of the vertex A to the triangle BCD is the incenter of
that triangle.
Proof
Let AK the perpendicular from A to the plane BCD. It is easy to see that
the point K will be inside of the triangle BCD. Therefore, according the
standard theorems of Analysis, see [2], the min.S exists.
We drop KE,KZ,KH the perpediculars from K to the sides BC,CD,DB
of the triangle BCD respectively. We see that AE,AZ,AH are the altitudes
of the triangles ABC,ACD,ADB respectively. So we will have:

2S = (ABC) + (ACD) + (ABD) = AE.BC +BZ.CD + AH.BD

For simplicity we will denote:

AK = h,KE = a1, KZ = a2, KH = a3, BC = b1, CD = b2, DB = b3

Therefore
2S = b1

√
h2 + a21 + b2

√
h2 + a22 + b3

√
h2 + a23

or

2S =
3∑

i=1

√
h2b2i + a2i b

2
i

From Minkowski inquality have:

2S ≥
√
h2(b1 + b2 + b3)2 + (a1b1 + a2b2 + a3b3)2 (1)

Hence
2S ≥

√
h2(b1 + b2 + b3)2 + 4(BCD)2

Therefore

min.S =
1

2

√
h2(b1 + b2 + b3)2 + 4(BCD)2

The condition for the equality, according Minkowski inequality is:

hb1
a1b1

=
hb2
a2b2

=
hb3
a3b3

(2)
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That is a1 = a2 = a3. So the point K must be the incenter of BCD. From
the above we conclude that the triangles AKE,AKZ,AKH are equal , hence
the dihedral angles BC,CD,DB are equal.
Now using contradiction we can prove that all the dihedral of the min.S
tetrahedron must be equal. It a simple problem to prove that the tetrahe-
dron with all the dihedrons equal is the regular. Suppose that A1, B1, C1, D1

are the common points of the insphere with the facets. From the equal dihe-
dral angles we see that A1B1C1D1 is a regular tetrahedron and obviosly the
ABCD is regular. Accordingly as immediate consequance is the
Theorem 1
From the tetrahedrons with the same volume, the min. surface has the reg-
ular.
Theorem 2
From the tetrahedrons with the same surface F the max. volume has the
regular.
In this proof and in next proofs we can accept for the existance problem the
standart theorems from the Analysis. Now, let A1B1C1D1 is a non regular
tetrahedron with constand surface F and volume V . From the Thorem 1
follows that we can find a tetrahedron A0B0C0D0 with the same volume V
and a bigger surface than A1B1C1D1. That is a contradiction.

The next problem is about the min.volume of the tetrahedrons circumscribed
to a given sphere. For the solution we wll need three propositions.
Proposition 2
The point P is in the interior of the trihedral angle AXY Z. The plane
through the point P , intersecting from the trihedral a tetrahedron ABCD
of min. volume, has as barycenter of the triangle BCD the point P .
Proof
Let ABCD the tetrahdron so that: B,C,D are in AX,AY,AZ respectively
and p1, p2, p3 the distances of P from the planes ACD,ABD,ABC respec-
tively. Also

AB = l1, AC = l2, AC = l3, CD = b1, DB = b2, BC = b3,

(ACD) = a1, (ADB) = a2, (ABC) = a3, (ABCD) = V

We will have:
3V = a1p1 + a2p2 + a3p3
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From AM-GM inequality, follows that

V ≥ 3
√
a1a2a3p1p2p3 (3)

The equality when:
a1p1 = a2p2 = a3p3 (4)

The above (4) gives the qualitative solution of the problem. That is the min.V
is optained from the equality of the volumes (PACD), (PADB), (PABC).
We easily can find the above min.V ol(ABCD), but we need the following
simple lemma
lemma
For the trihedral angle AXY Z and the B,C,D on the lines AX,AY,AZ
holds:

V ol(ABCD)

AB.AC.AD
= k constand. (5)

Indeed, for B0, C0, D0 constand points on AX,AY,AZ we have:

V ol(ABCD)

AB.AC.AD
=
V ol(AB0C0D0)

AB0.AC0.AD0

= k constand

We denote sin 6 CAD = k1, sin6 DAB = k2, sin6 BAC = k3 so from (4)
and (5) follows

k3p3l1l2 + k1p1l2l3 + k2p2l1l3 = l1l2l3.k1

therefore
k1p1
l1

+
k2p2
l2

+
k3p3
l3

= k (6)

Also from (4)

l2 =
l1k2p2
k1p1

, l3 =
l1k3p3
k1p1

(7)

From (6),(7) we take

l1 =
3k1p1
k

, l2 =
3k2p2
k

, l3 =
3k3p3
k

That is the triangle BCD is determined and the volume min.V from (3)
follows.

min.V = 9
p1p2p3
k2

3
√
k21k

2
2k

2
3
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Proposition 2
Inside of the trihedral angle AXY Z there is a sphere (O,R) . A tangent plane
p to the sphere at a point P intersects the lines AX,AY,AZ at the points
B,C,D respectively. The min.of the volume of the tetrahedron ABCD is
taken for P= the centroid of the triangle BCD.
The proof is easy and is the same for the plane.

Let BC the tangent to the circle (c) at the point P so that BP = PC (in
E3) P will be the centroid that is the middle point of BC. The triangle ABC
is the min. A second tangent to the circle intersects te sides AX,AY at the
points D′, E ′ respectively. We drow through P the parallel to D′E ′ which
intersects AX,AY at the points D,E. We have.(ABC) ≤ (ADE) ≤ (AD′E ′)
From the above, using contradiction (reductio ab absoredium) we can prove
that if a tetrahedron circumscribed to a sphere (O, r) has the tangents points
the centroid of the faces, then the tetrahedron is regular.
We need the Euler’s inequality. For the tetrahedron holds:

R ≥ 3r, where r = inradius, For En R ≥ nr
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For the proof it is enough to take the pericenter as interior point of the tetra-
hedron.
Let ha, hb, hc, hd the altitudes of the tetrahedronABCD andOA′, OB′, OC ′, OD′

the distances of the point O from the faces BCD,ACD,ABD,ABC. Obvi-
ously have:

R +OA′ ≥ ha

R +OB′ ≥ hb

R +OC ′ ≥ hc

R +OD′ ≥ hd

We multiplay the above inequalities succesively by (BCD), (ACD), (ABD, (ABC)
and summing the inequalities we find.

SR + 3V ≥ 12V

or
SR ≥ 3Sr

where S the surface and V the volume. The equality R = 3r only if all
the above inequalities are equalities, that is the tetrahedron must be regular.
The proof for En is the same.
We suppose that the tangent points A1, B1, C1, D1 of the faces of the tetra-
hedron ABCD with the inscribed sphere (O, r) are the centroids of the faces
respectively and G the centroid of the tetrahedron ABCD The line OG in-
tersects the altitude AH at the point O1. The triangles AO1G and A1OG
are similar, therefore:

AO1

OA
=

AG

GA1

= 3

hence AO1 = 3r. That is O1 = O. Also R = 3r and accordly the previous
proof the tetrahedron ABCD must be regular. We now can say that we have
proved that:
Therem 3
The minimum circumscribed tetrahedron to a sphere is the regular.

Theorem 4
The regular tetrahedron has the min. surface from all the tetrahedrons cir-
cumscibed to a given sphere.
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The proof is based in the in theorem 3. The formula of the volume is
(ABCD) = 1

3
rS where S the surface of ABCD. The volume is min. for

the regular, that is min.S for the regular tetrahedron.
In the sequel we will prove two useful propositions in order to study similar
problems.
Proposition a
We assume that the tetrahedron ABCD does not inglude the pericenter.
Then we can find a tetrahedron A′BCD with bigger volume, bigger surface
and bigger inradius.We suppose that the plane BCD intrsects the segmant
OA where O the pericenter. Let A′BCD the symmetric of the cap ABCD
with regard to the plane BCD and A′ the symmetric of the point A. The
half- line AA′ intersects the sphere to the point A”. The tetrahedron A”BCD
has bigger volume,surface and circuradius.
Proposition 2
The inradius of the regular tetrahedron is r = R

3
, where (O,R) is the cir-

cumsphere. So, for the inscribed tetrahedron ABCD with distances from
the pericenter to the faces pa, pb, pc, pd, both the followin cases
(1)pa, pb, pc, pd <

R
3

(2)pa, pb, pc, pd >
R
3

are impossible. The proof is easy.

Theorem 5
The regular tetrahdron has the max.volume from all the tetrahedrons in-
scribed in the same sphere.
Proof
We suppose that the tetrahedron ABCD is inscribed in the sphere (O,R).
Let p the parallel plane tangent to the sphere at the point A′. We choose p so
that A,A′ be in the same part with regard p. Obviously volume(A′BCD) ≥
(ABCD), equality only for A = A′.
We procced now by contradiction. We suppose that a no regular tetrahedron
ABCD has the max.volume and AB < AC. The plane q through A parallel
to BCD is no tangent to the sphere. To see this, we considere the plane
ABC which intersects the sphere to the circle ABC. The intersection of the
plane q with the circle ABC is a segment.

Theorem 6
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The regular tetrahedron inscribed in a sphere (O,R) has the max.surface
from all the inscribed tetrahedrons.
Proof
Let P = ABCD an inscribed tetrahedron, P1 = A1B1C1D1 the circum-
scribed tetrahedron with the faces respectively parallel to P and P0 = A0B0C0D0

the regular tetrahedron circumscribed to the sphere (O,R). We denote by
S(Q) the surface of the tetrahedron Q. The tetrahedrons P and P1 are sim-
ilar with ratio r

R
. That is because r is the inradius of P and R the inradius

of P1. Therefore we will have:

S(P )

S(P1)
=

r2

R2

From the well known inequality of Euler and theorem 4 we have:

r

R
≤ 1

3

S(P1) ≤ S(P0)

Hence, from the above follows

S(P ) ≤ 1

9
S(P0)

So the conclusion follows. The inscribed tetrahdron with max surface is the
regular.
2nd Proof
In a triangle ABC holds

a2 + b2 + c2 ≥ 4E
√

3 (8)

where a, b, c the sides and E the area.
Indeed, we know from the elementary Geometry that

a2 + b2 + c2 = 4E(cotA+ cotB + cotC)

but
cotA+ cotB + cotC ≥

√
3

so ,the inequality (8) holds. Equality for ABC equilateral.
In the tetrahedron ABCD inscribed in the sphere (O,R), we denote:
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The edges DA,DB,DC by a′, b′, c′ and AB,BC,CA by c, a, b.
We use (8) for the four triangles faces of ABCD and we take.

2(a2 + b2 + c2 + a′2 + b′2 + c′2) ≥ 4F
√

3 (9)

where F =
∑4

1Ei, and Ei the area of the faces.
Now we use the formula of Leibniz

m
[ n+1∑

1

mi|PAi|2
]

= m2|PQ|2 +
n+1∑
i>j

mimj|AiAj|2

where Ai(mi) points with masses mi. The center of mass is Q =
∑

miAi

m

m =
∑
mi and P is some point.

For P = O (circumcenter) , mi = 1, we take:

42R2 ≥ a2 + b2 + c2 + a′2 + b′2 + c′2 (10)

From (9)and (10) follows
8R2 ≥ F

√
3

That is:

max.F =
8R2

√
3

hence, the equality for the regular tetrahedron, as follows from (8) and (10)
3rd Proof
The bissectors planes of the dihedral angles AB,AC and AD passe through
a line intersecting the plane ABC to the point K. The point K has equal
distances from the planes of the trihedral angle ABCD.Let KL1 the distance
of K from the plane ACD, AH = ha the altitude from A, AA1 the altitude
from A to the triangle ACD and KK1 the distance fom K the distance from
K to CD
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We have

(AKCD) = 1/3(ACD).KL1 (AKCD) = 1/3.ha.(KCD)

From the above, follows:
KL1

ha
=

(KCD)

(ACD)

As above we drow KK2, KK3 perpendiculars to BD,BC and AA2, AA3 per-
pendiculars to BD,BC. It no difficult to see that

AA1

KK1

=
AA2

KK2

=
AA3

KK3

= p

and

(ACD)

(KDC)
=

ABD)

(KBD)
=

(ACB)

(BCD)
=

(ACD) + (ABD) + (ACB)

(BCD)
= p

Setting
S = (ACD) + ABD) + (ABC)
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we have
S = p(BCD)

Also

(KACD) = 1/3KL1.(ACD), (AKCD) = 1/3AH.(KCD)

therefore
AH

KL1

=
(ACD)

(KCD)
=

CD.AA1

CD.KK1

=
AA1

KK1

= p

The incenter the ABCD is the point I in the segment AK . We denote by
l1, l2, l3, l4 the barycentric coordinates of I. We have li ≥ 0,

∑
li = 1. also

r

ha
= l1

1

p
=
KL1

AH
=
l1
r
.KL1

r

KL1

= pl1

r

KL1

= 1− l

that is

p =
l2 + l3 + l4

l1

We considere the rerpendicular OM from the pericenter O to the BCD. The
line MO intersects the circumsphere to the point M . We can suppose tho
point O in the interior of the ABCD and OM ≥ R

3
, we have:

AI

IK
=
l2 + l3 + l4

l1
=
ha − r
r

=
ha
r
− 1 ≤ MM ′

r
− 1

That is
AI

IK
≤ R +OM

OM
− 1 =

R

OM
+ 1− 1 =

R

OM
≤ 3

Hence
S ≤ 3(BCD)

Thus for BCD=constand the maxS is 3(BCD). That is for A ⇒ M ′ p is
increasing. The Max when A = M ′. The Max of the surface of ABCD when
BCD equilateral, that is ABCD regular
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The last part of this paper is a theorem about the sum of the edges of
the tetrahedron ABCD.
Theorem 7
The regular tetrahedron has the max. of the sum of edges of the tetrahedrons
inscribed in a sphere (O,R)
Proof
Let ABCD be an iscribed tetrahedron in (O,R) and a, b, c, a′, b′, c′ the edges
(see the second proof of the thorem 5).
From (10) follows that

4
√

6.R ≥
√

6
√
a2 + b2 + c2 + a′2 + b′2 + c′2

hence
6a0 ≥ a+ b+ c+ a′ + b′ + c

′

where a0 the edge of the regular tetrahedron.
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