Affine Geometry.The distance from a point to the line.

G. A. Tsintsifas

Trilinear coordinates

Let $A B C$ be a triangle and a point M in the plane,

$$
M A^{\prime}=m_{a}, M B^{\prime}=m_{b}, M C^{\prime}=m_{c}
$$

the distances of the point M from the sides respectively. We denote by h_{a}, h_{b}, h_{c} the altitudes and

$$
l_{a}=\frac{m_{a}}{h_{a}}, l_{b}=\frac{m_{b}}{h_{b}}, l_{c}=\frac{m_{c}}{h_{c}}
$$

the barycentic coordinates of the point M.
In fact we introduce two kind of trillinear coordinates: The distances $M A^{\prime}=$ $m_{a}, M B^{\prime}=m_{b}, M C^{\prime}=m_{c}$ and the barycentric l_{a}, l_{b}, l_{c}. The problem is to express the distance of a point M in trilinear coordinates from a line with coefficients in trilinear form.
We suppose now the orthogonal Cartesian system $X O Y$ and $A B C$ a given triangle of reference. $O P$ the distance of the orizin from the site $B C$. We denote $O P=p_{1}$. We see that:
m_{a} is the distance from O from $B C$ - the distance from O from e, where e is the paralelle to $B C$.
tha is:

$$
\begin{equation*}
m_{a}=p_{1}-\left(x_{M} \cos u_{1}-y_{M} \sin u_{1}\right) \tag{1}
\end{equation*}
$$

where u_{1} is the angle of $O X, B C$. Similarly, we will take:

$$
\begin{align*}
& m_{b}=p_{2}-\left(x_{M} \cos u_{2}-y_{M} \sin u_{2}\right) \tag{2}\\
& m_{c}=p_{3}-\left(x_{M} \cos _{3}-y_{M} \sin u_{3}\right) \tag{3}
\end{align*}
$$

By x_{M}, y_{M} the Cartesin coortinates of the point M and u_{2}, u_{3} the angles of $C A, A B$ with $O X$. See the fig.

Let be the line $L: f(t)=q_{1} t_{a}+q_{2} t_{b}+q_{3} t_{c}=0$ where $t=\left(t_{a}, t_{b}, t_{c}\right)$ is the trilinear coordinates of the point t.
For some point $M^{\prime}\left(m_{a}^{\prime}, m_{b}^{\prime} m_{c}^{\prime}\right)$ in trilinear coordinates and $M(x, y)$ in Cartesian coordinates. We introduce the Cartesian coordinates in L.

$$
f\left(M^{\prime}\right)=\sum q_{1}\left[p_{1}^{\prime}-\left(x \cos u_{1}+y \sin u_{1}\right]\right.
$$

. In Cartesian form is:

$$
\begin{gathered}
f\left(M^{\prime}\right)=x\left(q_{1} \cos u_{1}+q_{2} \cos u_{2}+q_{3} \cos u_{3}\right)+y\left(q_{1} \sin u_{1}+q_{2} \sin u_{2}+q_{3} \sin u_{3}\right) \\
-q_{1} p_{1}-+q_{2} p_{2}-+q_{3} p_{3}^{\prime}
\end{gathered}
$$

So we will take

$$
d(M, L)=\frac{x_{M} \cdot A+y_{M} \cdot B-q_{1} p_{1}-q_{2} p_{2}-q_{3} p_{3}}{\sqrt{A^{2}+B^{2}}}
$$

where

$$
\begin{aligned}
& A=q_{1} \cos u_{1}+q_{2} \cos _{2}+q_{3} \cos u_{3} \\
& B=q_{1} \sin u_{1}+q_{2} \sin _{2}+q_{3} \sin _{3}
\end{aligned}
$$

and finaly

$$
\begin{equation*}
d(M, L)=\frac{q_{1} m_{a}+q_{2} m_{b}+q_{3} m_{3}}{\sqrt{q_{1}^{2}+q_{2}^{2}+q_{3}^{2}-2 q_{2} q_{3} \cos A-2 q_{3} q_{1} \cos B-2 q_{1} q_{2} \cos C}} \tag{4}
\end{equation*}
$$

Problem

The point $A^{\prime}, B^{\prime}, C^{\prime}$ are in the sides $B C, C A, A B$ of the triangle $A B C$ so that:

$$
\frac{B A^{\prime}}{A^{\prime} C}=\frac{C B^{\prime}}{B^{\prime} A}=\frac{A C^{\prime}}{C^{\prime} B}=p
$$

We suppose that the triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ have the same incenter. We will prove that the triangles are equilateral.
Proof
We will work in a trilinear system. Let $A(1,0,0), B(1,0,1), C(1,1,0)$, we also have:

$$
\frac{C B^{\prime}}{B^{\prime} A}=\frac{B^{\prime}-C}{A-B^{\prime}}=p
$$

$B^{\prime}(1+p)=p . A+C=p(1,0,0)+(0,0,1)=(p, 0,0)+(0,0,1) \Rightarrow B^{\prime}=(k, 0,1-k)$
where $k=\frac{p}{1+p}$. We also find $C^{\prime}(1-k, k, 0), A^{\prime}(0,1-k, k)$.
The equations of the lines:

$$
\begin{gather*}
A^{\prime} B^{\prime}: x(1-k)^{2}+y k^{2}-z k(1-k)=0 \\
B^{\prime} C^{\prime}:-x k(1-k)+y(1-k)^{2}+z k^{2}=0 \tag{b}\\
C^{\prime} A^{\prime}: x k^{2}-y k(1-k)+z(1-k)^{2}=0 \tag{c}
\end{gather*}
$$

the trilinear distances of the incenter I with regard to the triangle $A B C$ (reference to $A B C$) are $I(r, r, r)$ where r the inradius of $A B C$. From the
formula (4) we take $d\left(I, A^{\prime} B^{\prime}\right), d\left(I, B^{\prime} C^{\prime}\right)$
Hence $d\left(I, A^{\prime} B^{\prime}\right)=d\left(I, B^{\prime} C^{\prime}\right) \Rightarrow$
$(1-k)^{4}+k^{4}+k^{2}(1-k)^{2}-2 k^{2}(1-k)^{2} \cos C+2 k(1-k)^{3} \cos B+2 k^{3}(1-k) \cos A=$ $=(1-k)^{4}+k^{4}+(1-k)^{2}-2 k^{2}(1-k)^{2} \cos A+k^{3}(1-k) \cos B+2 k(1-k)^{3} \cos C$

After the manipulations for $k \neq 0, k \neq 1$ follows:

$$
k=\frac{\cos B-\cos C}{2 \cos B-\cos C-\cos A}
$$

cyclicaly

$$
k=\frac{\cos C-\cos A}{2 \cos C-\cos A-\cos B}
$$

after the manipulations we take:

$$
\cos ^{2} A+\cos ^{2} B+\cos ^{2} C=\cos A \cos B+\cos B \cos C+\cos C \cos A
$$

and finally $\cos A=\cos B=\cos C$ that is $A=B=C$

