An application of Brouwer's fixed point property theorem.

G. A. Tsintsifas Thessaloniki, Greece

1. The fixed point property is a topological invariant, that is if p is a continuous transformation to a set Q into itself and has the fixed point property, that is:

if

$$p(Q) \subset Q \Rightarrow \exists x \in Q : p(x) = x$$

then for every topological equivalent W of Q, the set W, has the fixed point property as well.

To see that, let h be a continuous transformation of W into itself: $h(W) \subset W$, and suppose u be a continuous transformation, so that: $u: Q \to W$. The transformation $g = u^{-1}hu$ is continuous and transforms Q into Q, therefore, it has a double point y, that is, $u^{-1}(h(u(y))) = y$, or h(u(y)) = u(y).

Hence, W has the fixed point property.

2. Let a point-set $A \in E^n$, $n \geq 3$, topological equivalent to the sphere $S^{(n-1)}$, where: $S^{(n-1)} = \{x/|x| = 1\}$. We consider two decompositions of A into A_1, A_2 and A'_1, A'_2 . that is:

$$A = A_1 \cup A_2$$
, and $A = A'_1 \cup A'_2$,

where, A_1 , A_2 , A'_1 , A'_2 are topological equivalent to $B^{(n-1)}$ ball: $B^{(n-1)} = \{x/|x| \le 1\}$.

Suppose now that f is a continuous transformation of A into itself, $f(A) \subset A$, without fixed points, that is:

$$\forall x \in A : f(x) \neq x, and c_1 = A_1 \cap A_2 and c_2 = A'_1 \cap A'_2$$

then

$$c_1 \cap c_2 \neq 0$$

Proof

Let $A - A_1 \cap A_2 = X \cup Y$. The sets $X \cup (A_1 \cap A_2)$ and $Y \cup (A_1 \cap A_2)$ are topological equivalent to the $B^{(n-1)}$ ball. There are two possibilities: (a) there is at least one point $a \in X$, so that

$$f(a) \in Y \tag{1}$$

and (b)

$$f(X \cup A_1 \cap A_2) \subset X \cup A_1 \cap A_2. \tag{2}$$

But according Brouwer's theorem, from (2) the set $X \cup A_1 \cap A_2$ would have the fixed point property, contrary to our supposition. Therefore (2) is no valid.

The set Y is connected and from (1) we conclude that:

$$f(X) \subset Y \cup A_1 \cap A_2$$
 and similarly $f(Y) \subset X \cup A_1 \cap A_2$ (3)

Let now $c_1 \cap c_2 = 0$, then either $c_2 \subset X$ or $c_2 \subset Y$. That contradicts to (3) therefore $c_1 \cap c_2 \neq 0$.