A characterization of Euclidean space

G. A. Tsintsifas

In this short note we will prove the following Geometrical characterization, for a Minkowski M^2 space (two dimensional normed space) to be Euclidean.

Theorem

If the tangent Minkowski segments from a point A to a Minkowski circle V are equal, then the Minkowski plane is an Euclidean plane, that is: $M^2 = E^2$. **Proof**

Let V be a Minkowski circle in M^2 and from a point A the two tangent segments AB and AC to V. We suppose that: ||AB|| = ||AC||.

In M^2 space a unit circle V_0 is centrosymmetric convex set and the norm of a line segment PQ is defined by:

$$\parallel PQ \parallel = \frac{2|PQ|}{|AB|}$$

where |PQ| is the Euclidean distance of the points P, Q and |AB| the Euclidean distance of the parallel diameter of V_0 .

The group of isometries in M^2 includes the product of homotheties and translations, so we can prove the theorem for the unit circle V_0 .

Let V_0 be the unit circle in M^2 and from a point we drop the AB and AC tangent lines to V_0 . We suppose that

$$\parallel AB \parallel = \parallel AC \parallel .$$

We consider the parallel radius OB' of V_0 to AB. the same AC' parallel to AC.

So we will have.

$$\parallel AB \parallel = \frac{|AC|}{|OB'|}, \quad \parallel AC \parallel = \frac{|AC|}{|OC'|}$$

see Fig. So it follows that

$$\frac{|AC|}{|OB'|} = \frac{|AC|}{|OC'|}$$

That is the triangles BAC, B'OC' are similar and hothetic and the center of homothety is the common point of the str.lines BB', AO, CC'. From the above we see that the ratio

$$\frac{BM}{MC} = \frac{B'M'}{M'C'}$$

so this ratio remains constant independent of the position of the point A on OK. We consider the point M' constant so the point A is moving in M'O but BC remains parallel to B'C' and the ratio $\frac{BM}{MC}$ is constant. Let B_0C_0 the parallel to B'C' diameter of V_0 . When BC is close to B_0C_0 , that is $BC \to B_0C_0$, we will have:

$$\frac{BM}{CM} \to \frac{B_0O}{C_0O} = 1$$

so we conclude that

$$\frac{BM}{CM} = 1$$

Now according to the Bertrand theorem, see (1), we conclude that V_0 is an ellipse. The basic transformation group of M_2 is the affine group, so we can transform V_0 to a circle.

Cmment

From the above theorem we conglude that, if a special triangle is equilateral, then the Mincowski space is Euclidean.

References

1.A.C.Thompson, Minkowski Geometry, Cambridge Univ.Press. 2.Mahlon M. Day, Normed Linear Spaces, Springer-Verlag.