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The study of the Normed linear spaces some times is easier after some
Geometrization of the space. It is well known that every Normed linear space
E is characterized by the two-suspace of E, that is by its M2 Minkowski
plane. An interesting class of Minkowski planes are those who accept as
unit circle the Radon curves. The study of the Radon curves as unit curves
in Minkowski Geometry is very interesting and supplies some Geometrical
characterizations for Euclidean spaces. We usually call as inner product
space an infinite Normed linear space provided by an inner product property
and the finite Normed space Euclidean space.
In this paper, after of an brief introduction to the N2 plane and to Radon
curves we will prove some propositions characteriging the Euclidean spaces.
Let K be a centrosymmetric convex body in E2. We denote by V = ϑK and
O the center of K.We suppose x ∈ E2 and x′ = Ox∩ V . The Minkowski N2

plane is defined by the norm
|Ox|
|Ox′|

Obviously K = {x/||x|| ≤ 1}.
We define the convex set K as unit circle of M2 and denote K0 and V0 = ϑK0.
The norm axioms are satisfied, as we can see in several books see e.g.[2
]. For the simplicity, we suppose that the normality is unique, that is the
perpendicular from a point to a line is unique. This is equivalent to the
unique tangent (support line) to every point of V0. We also see that the
normality is no symmetric relation, that if is a line is l perpendicular to the
line p generally the line p is no perpendicular to the line l. We denote

l a p.
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We denote by x instand ~Ox, so we write

x a y

that is Ox a Oy.
The symmetrical perpendicularity is defined by:

(x a y)
∧

(y a x)

and we will denote by
x>y

The problem of the characterization of a normed linear space as in inner
product space is very interesting.
Some well known Geometrical criteria, old and news, are the following.
1. If in the L.normed space E, every two dimensional subspace is Euclidean
then E is an inner product space.
2. Suppose that for the n-L.normed space E,for every 3-space P ∈ E, there
is a symmetrical perpedicularity, then E is inner product space.
3. If in M2 every Minkowski circle is ellipse, then M2 is E2.
4. Suppose that in M2 for every x, y ∈ M2 holds: x + y a x − y, then
M2 = E2.
This is an excelent theorem of Thomson. A short proof is the foillowing.
We can easily prove that the unit Minkowski circlel V0 is smooth. Let A be
the tangent point to V0 of the line q parallel to a given direction ~a. BC is a
chord of V0 parallel to ~a, see fig 1. We see that BC is parallel to q therefore
the diagonal OD of the parallelogramme OBDC is perpendicular to BC and
bisects BC. So according the Bertrand theorem see [2 ] V0 is an ellipse.
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fig1

A step closer from the Minkowski Geometry to Euclidean Geometry is
the Minkowski Geometry with symmetric perpendicularity. As my impre-
sion is in this subject only a few things are known. The unit circle V0 in M2

with symmetrical perpendicularity is a Radon curve from the name of the
Austrian Mathematicien see [11 ] who introduced these curves. We shortly
explain what is a Radon curve.
We consider an orthogonal Cartesian system xOy and the points A(1, 0),
B(0, 1). Let c be a convex curve in the first quadrant with A and B extrim-

ities. Let M ∈ c and r(M) = r(c, θ), where ~r(M) = ~OM , that is the r(M)

is the length of ~OM in the direction (cosθ, sinθ) for 0 ≤ θ ≤ π/2.
So we have :

c = {M/r(M) = r(c, θ)}

We now denote by h(θ) the support funnction o fc relative to the direction
(cosθ, sinθ) that is the distance of the orizin O to the support line of c at
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the point M see fi.2 The polar dual of c is a convex curve denoted by c∗ with
extrimities A and B, so that

h(c∗, θ).r(c, θ) = 1

r(c∗, θ).h(r, θ) = 1

in the fig. 2 we see that:

h(c, θ) = ON, r(c∗, θ) = OM ′

Therefore:
c∗ = {M ′/ON.OM ′ = 1}

The rotation of C∗ through O for π/2 gives a curve c∗(π/2) in the second
quadrant with extrimities B(0, 1) and A′(−1, 0). In the above points the
support lines of c∗(π/2) are respectively perpendicular to the axes Oy,Ox.
Let now T the image of M ′ with the above rotation. We easily recognise
that the support lines to the points M,T and the lines OM,OT define the
parallelogramme OTEM . The closed convex curve V0

V0 = c
⋃
c∗(π/2)

⋃
(−c)

⋃
(−c∗(π/2))

is a Radon curve and the Minkowski space M2 with unit curve V0 has the
symmetrical perpenticularity
.

fig2
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The purpose of our paper is to find criteria of L.normed spaces to be inner
product space, but here we use Geometrical methods working with a Radon
curve.

Thorem 1
Let x, y ∈M2 and V0 a Radon curve unit circle of M2. We suppose that

x>y, ‖x‖ = ‖y‖, |x|2 + |y|2 = constand

then the V0 is circle.
Proof
Let ~x = ~OM and ~y = ~OT . we see that:

|OM |2 + |OT |2 = |OA|2 + |OB|2 = 2 (1)

The area of the parallelogramme OTEM is equal to

(OTEM) = |OT |.|ON | = |OM ′|.|ON | = r(c∗, θ).h(c, θ = 1

Also (OTEM) = |OM |.|OT ||sin 6 MOT |
that is

|OM |.OT ||sin 6 MOT | = 1

obviously
|om|2 + |OT |2

2
≥ |OM ||OT |

therefore
|ON |2 + |OT |2

2
|sin 6 MOT | ≥ 1 (2)

From (1),(2) follows that: |sin 6 MOT | ≥ 1 That is 6 MOT = π/2. So the
points M = N and we conclude that V0 is circle and M2 = E2.

Theorem 2.
Let E be a L.Normed space with symmetrical perpendicularity. We suppose
that every square has the diagonals perpedicular and equal. Then E is an
inner product space.
Proof
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The equivalent problem is: In M2 the unit circle is the Radon curve V0. We
have to proof if

x, y ∈ V0 and (x>y)
∧

((x+ y)>(x− y)) and ‖x+ y‖ = ‖x− y‖

then M2 = E2

Let it be :

x = M, y = M1, P = x+y, Σ = OP∩V0, ‖x−y‖ = ‖OW‖ = ‖M1M‖

and T = OW ∩ V0 see fig 3.

fig3

We will have:

‖x+ y‖ =
|OP |
|OΣ|

, ‖x− y‖ =
|OW |
|OT |

But ‖x+ y‖ = ‖x− y‖ Therefore ΣT is parallel to PW .So we have:

|OS|
|OΣ|

=
‖x+ y‖

2
(3)

6



|SM |
|ΣQ|

=
|SM |
|OT |

=
‖x− y‖

2
(4)

From (3),(4) follows
|OS|
|OΣ|

=
|SM |
|ΣQ|

hence the point M is in the line OQ. We know from the Radon curve V0,
that (OM1PM) = (OΣQT ) = 1 Therefore

|OΣ|2

|OS|2
=

(OΣQ)

(OSM)
= 2

, So
|OΣ|
|OS|

=
√

2

That is

OΣ =
√

2
x+ y

2

We assume now that the point x is moving in V0. We can put

x = x(θ), 0 ≤ θ ≤ 2π

The curve V0 supposed to be smooth, so there exists the first derivate Also
for simplicity the vector OΣ will denoted by u. So we will have:

u̇ =
ẋ+ ẏ√

2

But u̇ is parallel to the vector M1M , thus

u̇ =
ẋ+ ẏ√

2
= κ(x− y)

where κ real number.Also for real numbers m,n have

ẋ = my ẏ = nx (5)

that is
my + nx√

2
= κx− κy,
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from the above
m√

2
= −k, n√

2
= k

that is m = −n and from (5) we take

xẋ+ yẏ = 0 or x2 + y2 = constand

So according the theorem 1 we see that V0 is circle and the L. Normed space
is Euclidean.
Corollary 1
In M2 with symmetrical perpendicularity we assume that V0 is the unit circle.
Suppose that x, y ∈ V0 and

x>y, ((x+ y)>(x− y))
∧

(‖x− y‖)

then it holds
‖x+ y‖‖x− y‖ = 2

Proof.
Indeed, let p1 and p2 the distances of the center O from M1M and from the
support line at the point S, see fig 3. We will have

p1|x− y| = (OM1PM) = 1 (6)

Also
p2|OT | = (OΣQT ) (7)

Because of OΣ > OT . From (1) and (2) follows that

p1
p2

=
|x− y|
|OT |

= 1

or
|OS|
OΣ|

· ‖x− y‖ = 1

or
2|OS|
|OΣ|

· ‖x− y‖ = 2

and finally ‖x− y‖‖x+ y‖ = 2
Corollary 2
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If in a L.normed space E with symmetrical perpendicularity the square
ABCD with unit sides has perpendicular diagonals, AC andBD and holds

‖AC‖2 + ‖BD‖2 = 4

then M2 = E2

Proof
From the previous corollary we have:

‖x+ y‖‖x− y‖ = 2 (8)

Also it supposed that

‖x− y‖2 + ‖x+ y‖2 = 4

From the assumption and (8) easilly follows that ‖x+ y‖ = ‖x− y‖. There-
fore from the theorem (2) we see that M2 = E2
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