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It is our purpose here to establish some relations between the distances
of points in Rn. Especialy we have proved some formulas working on the
Darboux-Frobenius and Galey-Menger’s determinants. Some of them have
been represented in a more generalised form using instead of the points Ai

the spheres (Ai, Ri).
From the well known part of the elementary Geometry there is a generaliza-
tion of the Ptolemy’s theorem in its plane version.
Let Fi = (O,Ri) ,i = 1, 2, 3, 4 is a net of circles, then A = 0 where

A =

∣∣∣∣∣∣∣∣∣
−2R2

1 D(F1, F2) D(F1, F3) D(F1, F4)
D(F2, F1) −2R2

2 D(F2, F3) D(F2, F4)
D(F3, F1) D(F3, F2) −2R2

3 D(F3, F4)
D(F4, F1) DF4, F2) D(F4, F3) −2R2

4

∣∣∣∣∣∣∣∣∣
D(Fi, Fj) is the mutual power of the circles Fi, Fj.that is:

D(Fi, Fj) = OiO
2
j −R2

i −R2
j

The converse holds as well.
If we took Ri = 0, i = 1, 2, 3, 4, A = 0 it is the well known Ptolemy’s theorem.

1.The net of a family of spheres.
A family of spheres consist a net if there exist a point with the same power
relative to every sphere.
Let

Fj =
n∑

i=1

(xi − xji)
2 −R2

j = 0, j = 1, 2, ....k (1)
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be a family of spheres in Rn.
We consider the linear system

y1xji + y2xj2 + .... + ynxjn + yn+1 + yn+2

( n∑
i=1

(x2
ji −R2

j )
)

= 0 (2)

and the matrix

A =
[ n∑

i=1

(x2
ji −R2

j ) xj1 xj2.....xjn 1
]

of its coefficents.
Assuming that the system (2) is non trivialy compatible we must have

r < n + 2

where r is the rank of the matrix A.
(a) If r = n + 1, the system (2) has one solution ai = yi

yn+2
, i = 1, 2, ...n + 1

Therefore we can write:

n∑
i=1

x2
ji + 2

n∑
i=1

ai

2
xji +

n∑
i=1

a2
i

4
+

[
−

n∑
i=1

a2
i

4
+ an+1

]
−R2

j = 0

for j = 1, 2, .....k
Hence:

n∑
i=1

(ai

2
+ xji

)2
−R2

j =
n∑
i

a2
i

4
− an+1

for j = 1, 2, .....k.
The left side of the above equality is the power of the point A(a1/2, a2/2, ....an/n)
relative to the spheres Fj for j = 1, 2, ....k that is:

D(Fj, A) = constand (3)

so the spheres Fj consist a net of center the point A.
(b).For r < n + 1 the spheres have a radical axes a plane of order n + 1− r.

2. The Darbou-Frobenius matrix
We denote

Fm =
n∑

i=1

(xi − x′
mi)

2 −R′2
m = 0 (4)
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m = 1, 2, ....p, one other sphere family, with matrix

A′ =
[ n∑

i=1

x′2
mi −R′2

m x′
m1 x′

m2.. x′
mn 1

]

Also denoting

A1 =
[
1 − 2x′

m1 − 2x′
m2... − 2x′

mn

n∑
i=1

x′2
mi −R′2

i

]

we can easily see that:

A · Ã1 =


D(F1, F

′
1) D(F1, F

′
2) · · · D(F1, F

′
p)

D(F2, F
′
1) D(F2, F

′
2) · · · D(F2, F

′
p)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D(Fk, F

′
1) D(Fk, F

′
2) · · · D(Fk, F

′
p)

 (5)

where D(Fj, F
′
m) is the mutual power of the spheres Fj and F ′

m. That is:

D(Fj, F
′
m) =

n∑
i=1

(xji − x′
mi)

2 −R2
j −R′2

m

The matrix A · Ã1 will be denoted by

D(F1, F2, ....Fk : F ′
1, F

′
2, ...F

′
p) = A · Ã1

and we call it the Darboux-Frobenius matrix. We shall study the Darboux-
Frobenious determinant.
(a). Let k, p > n + 2.
The matrices A, A′ are of the maximum rank n + 2 ,so every minor of the
determinant D(F1, F2, ...Fk : F ′

1, F
′
2, ...F

′
p) with rank greater than n + 2 will

be zero.
(b) if min(k, p) = n + 2 and one at least from detA, detA′ has rank n + 1,
then every minor of the detD(F1, F2, ..Fk : F ′

1, F
′
2, ...F

′
p) with rank n + 2 will

be zero.
(c) if min(k, p) ≤ n + 1 and r is the rank of one of the A, A′, then every
minor from the determinant D(F1, F2, ..Fk : F ′

1, F
′
2, ...F

′
p) with rank less than

r will be zero.
Taking now R′

m = 0 m = 1, 2, ....p the spheres F ′
m will be the points
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A′
1, A

′
2, ....A

′
p (their centers).

Here the D(Fj, A
′
m) must be the power of the point A′

m with respect the
sphere Fj. The relations (a),(b),(c) are transformed analogously.

Besides if we take Rj = 0, we have: D(Aj, Am) = | ~AjAm|2, that is the dis-
tance of the points Aj, Am. The matrix D(A1, A2, ..AK : A′

1, A
′
2...A

′
p) gives

for the cases a),b),c) analogous relations.

3. Generalization of the Ptolemy’s theorem
The Darboux-Frobenious determinant can be written

P = detD(F1, F2, ...Fn+2 : F1, F2, ....Fn+2) = (−1)n2n(detA)2 (6)

for a family of spheres in Rn. Assuming that the above spheres consist a net,
then P = 0. The converse is obvious, therefore the following theorem holds.
Theorem
Iff for the family of the spheres F1, F2, ....Fn+2 holds P = detD(F1, F2, ...Fn+2 :
F1, F2, ...Fn+2) = 0 then the spheres consist a net.
For R2, F1, F2, F3, F4 are a net of circles in the plane. That is, there is a
point, the center, with the same power relative to the circles. So the tan-
gents from the center to the circles would be equal. If the radii of the circles
are zero, the centers will be in the circle with center the center of the net.
Some restrictions on the above theorem can lead us to Ptolemy’s theorem.
Indeed, we assume that Ri = 0 for i = 1, 2, ....n + 2 and n = 2. Then we
must have:

P = detD(A1, ...A4 : A1, ...A4) =

∣∣∣∣∣∣∣∣∣
0 d2

12 d2
13 d2

14

d2
21 0 d2

23 d2
24

d2
31 d2

32 0 d2
34

d2
41 d2

42 d2
43 0

∣∣∣∣∣∣∣∣∣ = (−1)222(detA)2

where

detA =

∣∣∣∣∣∣∣∣∣
x2

1 + y2
1 x1 y1 1

x2
2 + y2

2 x2 y2 1
x2

3 + y2
3 x3 y3 1

x2
4 + y2

4 x4 y4 1

∣∣∣∣∣∣∣∣∣
Ai = (xi, yi) and | ~AiAj|2 = d2

ij = d2
ji. It is no difficult to find out that:

P = −(d12d34+d13d24+d14d23)(−d12d34+d13d24+d14d23)(d12d34−d13d24+d14d23)

(d12d34 + d13d24 − d14d23)
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and Ptolemy’s theorem follows.
Also from the formula (6) arises:

detD(F1, F2, .....Fn+2 : F1, F2, ......Fn+2) ≥ 0 for n even and ≤ 0 for n odd
(7)

For the points A1, A2, .....An+2 in Rn.

detD(A1, A2, .....An+2 : A1, A2, ......An+2) ≥ 0 for n even and ≤ 0 for n odd
(8)

An interesting formula is the following

detD(A1..An+2 : A′
1..A

′
n+2) = detD(A1..An+2 : A1..An+2)·detD(A′

1A
′
2..A

′
n+2 : A′

1A
′
2..A

′
n+2)

(9)
Where Ai and A′

i, i = 1, 2, ...n + 2 are points in Rn.
The proof follows from the formula (5). We have

detD(A1A2..An+2 : A′
1A

′
2..A

′
n+2) = det(A · Ã1) = (−1)n+12ndetA · detA′

and
detD(A1A2..An+2 : A1A2..An+2) = (−1)n+12n(detA)2

detD(A′
1A

′
2..A

′
n+2 : A′

1A
′
2..A

′
n+2) = (−1)n+12n(detA′)2

From the above follows (9).
5. The Cayley-Menger Matrix.
It is so kaled the matrix

Θ(A1A2..Ar : A′
1A

′
2..A

′
k) =


0 1 · · · 1

1 ~A1A′
1

2
· · · ~A1A′

k

2

.

1 ~ArA′
1

2
. . . ~ArA′

k

2


where A1, A2, ..Ar and A′

1, A
′
2, ..A

′
r two point sets in Rn.

Proposition 1.
For a point O ∈ Rn and the two point sets A0, A1, ..Ar, A′

0, A
′
1, ..A

′
r holds:

(a) detΘ(A0, ..Ar : A′
0, ..A

′
r) = (−2)r

∣∣∣∣∣∣∣∣∣∣
0 1 · · · 1

1 ~OA0 · ~OA′
0 · · · ~OA0 · ~OA′

r

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 · · · · · · ~OAr · ~OA′
r


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(b) We denote ~A0Ai = ~xi and ~A′
0A

′
i = ~yi for i = 1, 2, ...r and G(x, y) the

Gramian of the ~xi, ~yi that is:

G(x, y) =


~x1 ~y1 ~x1 ~y2 · · · ~x1 ~yr

~x2 ~y1 ~x2 ~y2 · · · ~x2 ~yr

. . . . . . . . . . . . . . . . . . . . .
~xr ~y1 ~xr ~y2 · · · ~xr ~yr

∣∣∣∣∣∣∣∣∣
we slall prove

detΘ(A0, A1, ..Ar : A′
0A

′
1, ..A

′
r) = (−1)r+12rdetG(x, y)

Proof
(a). For every point O ∈ Rn we have:

| ~AiAj|2 = | ~OAi|2 + | ~OAj|2 − 2 ~OAi · ~QAj

We substitute from the above formula | ~AiAj|2 for i, j = 1, 2, ...r in detΘ(A0, ..Ar :

A′
0, ..A

′
r). We multiplay the first row by | ~OAi|2 and substract it from the i+2

row. Then we multiplay the first column by | ~OAj|2 and we substract it from
the j + 2 column. Then an easy calculation gives (a).
(b). We take detΘ(A0..Ar : A′

O..A′
r) and we substract the second row from

its following ones. then we substract the first column from the others.
So we will have

detΘ(A0A1, ..Ar : A′
0A

′
1, ..A

′
r) = (−1)r+12rdetG(x, y)

Proposition 2.
If the points A0, A1, ..Ak+1 lie in a q− plane where q = n− k, then for every
point set A′

0, A
′
1, ...A

′
k+1 ∈ Rn we will have:

detΘ(A0A1...Ak+1 : A′
0A

′
1...A

′
k+1) = 0

If the two point sets A0, A1, ...Ak and A′
0, A

′
1, ...A

′
k define two different or-

thogonal (n− k − 1)-planes then:

detΘ(A0A1...Ak : A′
0A

′
1...A

′
k) = 0

Proof.
For the liearly dependent point set A0, A1, ...Ak+1, there exist the real num-
bers p0, p1, ..pk+1 (non all zero) so that, for every point O ∈ Rn we shaal
have:

k+1∑
i=0

pi = 0
∧ k+1∑

i=0

pi
~OAi = 0
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or,equivalently

k+1∑
i=1

pi
~A0Ai = 0 or

k+1∑
i=1

pi
~A0Ai · ~A′

0A
′
j = 0

for j = 1, 2, ..k + 1
But the above system has no trivial solution. So the determinant of the
coefficients must be zero. Thus if we denote ~A0Ai = ~xi, ~A′

0A
′
j = ~yj we will

have:
detG(x, y) = 0

The above and (5) proposition1(b) prove the asked.

(b). Let L be the linear subspace spanned by the vectors ~A0Ai = ~xi and

L′ the linear space spanned by the vectors ~A′
0A

′
j = ~yj for i, j = 1, 2, .., k.

According the above we can take a vector ~t 6= 0 of L so that

~t · ~yi = 0

for i = 1, 2, ...k.
Let it be ~t =

∑k
i=1 qi ~xi with qi ∈ R, i = 1, 2, ...k

So, we will have
k∑

i=1

qi ~xi · ~yj = 0

The above system has no trivial solution. That is

detG(x, y) = 0

therefore
detΘ(A0A1...Ak : A′

0A
′
1...A

′
k) = 0

Proposition 3. If

detΘ(A0, A1..Ak : A′
0, A

′
1, ..A

′
k) = 0

then
(a) One at least from the point sets A0, A1, ..Ak and A′

0, A
′
1, ...A

′
k contains

linearly depentent points, or
(b) The point sets A0, A1, ..Ak and A′

0, A
′
1, ..A

′
k belong in two orthogonal

linear subspaces of Rn.
Proof.
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From 5 prop. 1(b) follows
detΘ(A0...Ak : A′

0...A
′
k) = 0 therefore detG(x, y) = 0

where ~A0Ai = ~xi, ~A′
0Aj = ~yj

but, then, the system

yj(
k∑

i=1

pi ~xi) = 0, j = 1, 2, ...k

has no trivial solution. That is
(a)

k∑
i=1

pi ~xi = 0

or if
k∑

i=1

pi ~xi 6= 0

then

∑k
i=1 pi ~xi is orthogonal to ~yj.

Proposition 4.
If A0, A1, ..Ak and A′

0, A
′
1, ..A

′
k are two sets in Rn, then:

detΘ(A0..Ak : A′
0..A

′
k)

2 ≤ detΘ(A0..Ak : A0..Ak)detΘ(A′
O..A′

k : A0..A
′
k)
(10)

The proof follows immediately from Bessel-Schwarz inequality for Gramians,
see (4) and from 5 proposition 1(b).
The equality follows from 5 prop. 1(b) and from (4). It holds
(a). If the two linear spaces L, L′ which are spanned by the point sets, are
parallel or coincided and conversaly.
(b). If at least one from the point sets contains linearly dependent points
and conversaly.
It is well known that the volume V (A0, A1, ..Ak) of a simplex with vertices
A0, A1, ..Ak is given by the formula

(−1)k+12k(k!)2[V (A0A1, ..Ak)]
2 = detΘ(A0A1..Ak : A0A2..Ak)

se (2)From the above and formula 10 we take

|detΘ(A0A1..Ak : A′
0A

′
1..A

′
k)| ≤ 2k(k!)2|V (A0A1..Ak)V (A′

0A
′
1..A

′
k)| (11)

8



The equality occurs iff (a) and (b) holds.
Remark.
Formula (11) can be used for a defination of the angle between the two linear
spaces. So, if the two point sets A9, A1, ..Ak and A′

0, A
′
1..A

′
k spann respectively

the linear spaces L and L′, then the angle φ between them can be defined by

cosφ =
detΘ(A0A1..Ak : A′

0A
′
1..A

′
k)

2k(k!)2V (A0A1..Ak)V (A′
0A

′
1..A

′
k)

Relations between Darboux-Frobenius and Cayley-Menger’s deter-
minants Proposition 1.
Let sk = A0A1..Ak be a k-simplex and R its circumradius. We will prove
that

detD(A0A1..Ak : A0A1..Ak) + 2R2detΘ(A0A1..Ak : A0A1..Ak) = 0

Proof
Let O be the circumcenter of the sk. From (5) prop. 1(b) follows

detΘ(A0, A1, ..Ak, O : A0, A1, ..Ak, O) = 0

so, we have: ∣∣∣∣∣∣∣∣∣
0 1 · · · 1
1 0 · · · R2

. . . . . . . . . . . . . .
1 R2 · · · 0

∣∣∣∣∣∣∣∣∣ = 0

We multiplay the first row by R2 and we substract it from the last row. Then
we multiplay the first column by R2 and we substract it from the last column.
Expanting the determinant with respect to the elements of the last column
we have the proposed, see(5).
Proposition 2.
We denote by F and F ′ The circumspheres of the k-simplices
sk = A0A1..Ak and A′

0A
′
1..A

′
k and D(F, F ′) their mutual power, that is

D(F ′F ′) = OO′2 − R2 − R′2 where O, O′ the circumcenters. We will prove
that:

detD(A0A1..Ak : A′
0A

′
1..A

′
k) + D(F, F ′)detΘ(A0A1..Ak : A′

0A
′
1..A

′
k) = 0

Proof
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Taking into account 5 prop.1(b), we will have:

detΘ(Ao, A1, ..Ak, O : A′
0, A

′
1, ..A

′
k, O) = 0

hence, ∣∣∣∣∣∣∣∣∣∣∣

0 1 . . . 1

1 ~A0A′
0

2
. . . R2

. . . . . . . . . . . . . . . . . . . . . . . .

1 R′2 R′2 · · · ~OO′2

∣∣∣∣∣∣∣∣∣∣∣
= 0

We multiplay the first row by R′2 and we substract it from teh last row.
Further, we multiplay the first column by R2 and we substract it from the
last column. By expansion of the determinant with respect to the elements
of last column we have:

detD(A0..Ak : A′
0..A

′
k) + (OO′2 −R2 −R′2)detΘ(A0..Ak : A′

0..A
′
k) = 0

Concluding from (9) and (6) prop. 1 and 2 we take:

detΘ(A0..Ak : A0..Ak)Θ(A′
0..A

′
k : A′

0..A
′
k) =

[
D(F, F ′)

2rr′

]2[
detΘ(A0..Ak : A′

0..A
′
l)

]2
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