Two elementary inequalities for the proof of
the Brunn-Minkowski Theorem.

G. A. Tsintsifas

R. Schneider in the proof of the Brunn-Minkowski theorem uses the fol-
lowing inequality.
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Where 0 < A < 1 ug, u; positive real numbers and p positive integral.
The elementary proof below is quite interesting.
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and (1) is transformed to
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From A.M-G.M follows
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Also from A.M-G.M we take
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From the last two inequalities we take (2).
P.Gruber for the same proof uses the inequality
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We put:
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in (2) and we take (3).
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