# Three problems on mixed area 

G. A. Tsintsifas

## Problem 1. Betke-Weil

Let $F_{1}, F_{2}$ convex be sets in the plane, $V\left(F_{1}, F_{2}\right)$ is the mixed volumes and $L_{1}, L_{2}$ are the perimeters. Then it is:

$$
V\left(F_{1}, F_{2}\right) \leq \frac{L_{1} L_{2}}{8}
$$

## Proof

We suppose that the points $A, B$ bissect the perimeter of $F_{2} . O$ is the middle point of $A B$ and $M \in b d F_{1}$ and $l$ the tangent at the point $M$ of $F_{2}$ and $p_{2}$ the support function. From the triangle $A M B$ we see that

$$
O M \leq \frac{M A+M B}{2}
$$

So we have $p_{2} \leq O M \leq \frac{L_{2}}{4}$, therefore:

$$
V\left(F_{1}, F_{2}\right)=\frac{1}{2} \oint p_{2} d s_{1} \leq \frac{L_{2}}{8} \oint d s_{1}=\frac{L_{1} L_{2}}{8}
$$

The equality if and only if $F_{1}$ and $F_{2}$ are perpendicular straight line segments.

## Problem 2, Betke-Weis

For the convex set $F$ holds:

$$
V(F,-F) \leq \frac{\sqrt{3}}{18} L^{2}
$$

Proof

The proof is based in the following problem of Eggleston.(Problems in Euc.space,Pergamon press,p 157(iii)).
If $\Gamma$ is central then every circumscribing equilateral triangle has perimeter less or equal to $L \sqrt{3}$.
We consider $F^{\odot}=\frac{F-F}{2}$ and the min regular hexagon $Q=A B C D E F$ circuscribed to $F^{\odot}$ and as we know to both $F$ and $-F$.
Taking the center of $Q$ as orizin we will have:

$$
V(F,-F)=\frac{1}{2} \oint p_{F} d s_{-F}
$$

But $A B=a \geq p_{F}$, therefore

$$
V(F,-F) \leq \frac{6 a}{2.6} L
$$

The intersections of the lines $A B, C D, E F$ define the equilateral triangle $K P M$ with side $3 a$. So according to the above problem of Eggleston we will have:

$$
V(F,-F) \leq \frac{L \sqrt{3}}{2.6} L \cdot \frac{2}{3}=\frac{\sqrt{3}}{18} L^{2} .
$$

As it is easily understood until now we considered $F$ smooth. For $F$ polygon we can determine the case of the equality. We first see that it must be regular and then with min. number of sides, that is a equilateral triangle. We did'n't find a case of equality for $F$ smooth.

## Problem 3. L.Sandalo

Mixed volumes and duality

$$
V\left(F, F^{*}\right) \geq \pi
$$

by $F^{*}$ we denote the polar dual of $F$.
Proof

$$
\begin{equation*}
V\left(F, F^{*}=\frac{1}{2} \int_{0}^{L} p^{*}(s) d s\right. \tag{1}
\end{equation*}
$$

but $r(\phi) p^{*}(\phi)=1$, also $p(\phi) \geq r(\phi)$ therefore

$$
\begin{equation*}
p^{*}(\phi) p(\phi) \geq 1 \tag{2}
\end{equation*}
$$

From (1) and(2) follows:

$$
\begin{aligned}
& V\left(F, F^{*}\right) \geq \int_{0}^{2 \pi} \frac{d s(\phi)}{p(\phi)}=\frac{1}{2} \int_{0}^{2 \pi} \frac{\rho(\phi) d \phi}{p(\phi)} \\
&=\int_{0}^{2 \pi} \frac{p+\ddot{p}}{p} d \phi=\pi+\frac{\dot{p}}{p} \int_{0}^{2 \pi}-\frac{1}{2} \int_{0}^{2 \pi} \dot{p} d\left(\frac{1}{p}\right)= \\
&=\pi+\frac{1}{2} \int_{0}^{2 \pi} \frac{\dot{p}^{2}}{p^{2}} \geq \pi
\end{aligned}
$$

Equality for $p(\phi)=r(\phi)$ and $\dot{p}=0$ that is $F=$ circle.

## References

1.R.Schneider, Convex bodies: The Brunn-Minkowski Theory. Cambridge university press.
L.A.Santalo,Integral Geometry and Geometrc Probability, Addison-Wesley Publishing Company.

