An inequality for convex sets.

G. A. Tsintsifas

M. Henk and myself in [1] proved the following interesting inequality for plane convex sets

where V is the area, D the diameter and r the inradius of a convex set F. The following proof sems to be simpler. We need the very importand lemma, below.

Lemma

For the plane convex set F holds:

 $D \ge R + r$

where R the circumradius.

Proof

We consider the circles (I, r) and (I'D - r). We will prove that every point $A \in (I, D - r)$ is not an interior point of F. We take at the point A the tangent l_1 to (I, D - r). Let l_2 the parallel to l_1 tangent to (I, r). We see that the distance between l_1 and l_2 is D.

Suppose now n_1 and n_2 are the parallel to l_1, l_2 support lines of F. Let that n_2 is not included in the strip (l_1, l_2) . So n_1 must be in the strip (l_1, l_2) and the proof finished.

Therefore $D \ge R + r$. The equality for convex sets with constant width. The same proof for E^n .

Now to the **proof**.

Let (I, r) the inscribed circle in F and $A, B, C \in F \cap (I, r)$ so that $\operatorname{arc} AB$, and $\operatorname{arc} AC \geq \frac{1}{2}\pi$ (that is possible). We consider the circle (I, D - r). FRom the lemma, we see that every point M of the circle (I, D - r) is not an interior point of F. Let now NW, DE, FZ the tangent lines of (I, r) at the points

A,B,C. The convex set F is included by the lines NW,DE,FZ and the circle I, D - r). So one easy calculation shows that the area of F is max. if F=QD'F'T, see fig.

where $\operatorname{arc} AB' = \operatorname{arc} AC' = \frac{\pi}{2}$. Therefore $V < \operatorname{area}(QD'F'T) < 2Dr$.

References

1. M.Henk,G.Tsintsifas, Some Inequalities for Planar Convex Figures,Elemente der Mathematik 49(1994)

2. T.Bonnesen, W Fencel, Theory of Convex Bodies B Associates.