The cutting numbers.

G. A. Tsintsifas

Let Fy and F be convex compact smooth figures in 2. We see that we
can find a point z € R? and a number t € R' so that: z + tF € Fy.
We will call inradius of Fjy relative to F' the max t. We denote rp(Fp).
With the same way we can define the circumradius of the F{ relative to F,
that is the min ¢ so that z + tF' > Fy and we denote Rp(Fjp).
According the above, we conclude that for every number ¢ so that

TF<F0) <t< RF(FO>

and for every z € E? the figure z+tF is not included in Fy and does’t include
Fp.

We will call cutting number of Fj relative to F', this number ¢. We denote:
tr(Fy), or simply ¢t. That is:

(z +tF € intFy) \(int(z + tF) # Fp)

For the present paper we need two simple propositions on the cutting num-
bers.
P.1

tp(Fy) .t (F) =1

The proof is very easy.

P.2

For t = tp(Fy) we can find z so that the figures Fy , z 4+ tF are inscribed in
the same triangle ABC.

Indeet, we consider the insrcibed figure Fy = rp(Fp).F to Fy. For t between
the numbers rp(Fpy), Rp(Fo) we find an honothetic to F; figure F” including
F} and included in Rp(F0).F. The convex cover of FyUF’ has a straight line
segments in the perimeter. So there is a triangle circumscribed to Fy U F”



and to both Fy, F'.

Some interesting theorems can be proven using the cutting numbers.
Theorem 1

For the convex figures Fy and F' = tF where t = tp(Fp) holds:

(V(sFy+ s'F") > sV (Fy) + s'V(F) (1)

with 5,8 > 0 and s + s = 1.
that is for the set {Fy, F' + tF'}, for rp(Fy) < t < Rp(Fp), the volume is
linear (concave).
Proof of the theorem 1.
We translate F” as in Proposition 2 exposed and let the triangle ABC' cir-
cumscribed to both figures Fy and F’. (or we translate F' = rp(ABC).F
inside in a circumscribed tringle to Fp).
Now we take a point M of the arc DE of bdFy. M M, is the tangent segment
until the side AC' and we use a formula of Frobenius. That is: The area of
the part included between the arc DE and the angle C' is:

1 pmC

- MM3:do.
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where ¢ is the angle of M M; with the side AC




The same for F’ and M’M], the analogous segment. The figure sFy+s'F’,
s,8 > 0s+s’ = lisinscribed in the triangle ABC and the analogous segment
is MM, + s'M'M{. We put MM, =p and M'M;| =7’

Easily we find

V(R = V(4BC) - 5 [y @)

Therefore
1 2m
P=V(sky+ sF')=V(ABC) — 5/ (sp + s'p')*d¢
0
From the well knwn inequality sp® + s'p’? > (sp + s'p’)? follows

P> (s+¢)V(ABC) — ;[ /0 " sptdo + /0 i s/p’2d¢]

or

P> s|V(ABC) — ; /0 2” pgdgb} +d [V(ABC) - /0 7 plegb}

finally

V(SF(] + S,F,) > SV(F()) + S/V(F/)
The case of the equality when sp = s'p/. Here from the elementaty Geometry
we conclude that Fy = F’, or Fy = tF that is Fy and F must be similar.

A number of inequalities can be obtained from our basic inequality (1). for
s =5 =3 we take:

Fy+ F’ F F
It is known that:
o+ F' V(Fy)  V(F')  V(Fy, F)

V(2>:4+4+8

where V' (Fp, F') the mixed area. The last inequality according to (3) gives:
V(Fy) + V(F')

V(R ) > A0 (1
From (4) and the A.M-G.M inequality we take
V(Fo, F')* > V(Fo)V(F) ()
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We substitude in (4) and (5) F' = tF. So we have

i, F) > VT )

V(Fy, F)? > V(FR)V(F) (7)

Also from
V(sFy+ s'F) = sV (Fp) + 258’V (Fy, F) + sV (F)
and from (7), we take:

Theorem 2.
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V(sFy+ s'F)2 > sV(Fy)2 + s'V(F)

The Brunn-Minkowski Theorem.

Isoperimetric inequalities
We suppose that F' = u is the unit circle and ry the inradius of Fj,formula
(6) will be.

roV (Foy,u) > Vi(Fo) + 16V (1)

hence,

— >
Ty = 2
That is beaucause of the well known V (Fp,u) = £ .
The last relation can be written
L 1 2
V(R > —(Ly— 2
i V(Fo) > 47T( 0 — 27ry) (9)

That is an isoperimetric inequality of Bonnesen style.
The inequality (6) can be written

0> t*V(F) —2tV(Fy, F) + V(F) (10)

From (10) we see that the cutting numbers of Fj relative to F' are included

V(Fo,F)+vVD V(Fy,F)—VD

VSV where

between the real roots of the equality (10),



D =V (F, F)* = V(F)V(F).
Let now pg = rr(Fy) and Py = Rp(Fp). It is:

V(Fy, F) — VD << Py < V(Fy, F) ++vD
VF) VF)
Therefore
Py —po < 2\(/}2
and finally

V(Fo, F)? = V(R)V(F) >

Symmetrically we can write

V()21 1.,

V(Fy, F)? = V(F)V(F) > T O h

From (12) and (13) follows

V(Fo)V(F)(Po — po)?
4poRo

V(F, F)? = V(F)V(F) >

or 9
(Bo + po)”

V(Fy, F)? > V(F)V(F) 1Ropo

(12)

(13)

(14)

From (12) we can take the very well known inequality of Bonnesen for F' = u

the unit circle and ry, Ry the inradius and the circumradius of Fj.

Lg — 47TV(F0) 2 7T2(R0 - 7“0)2

A very interesting inequality follows from (7)

Vi) — ﬁ/(F)}2
2t

V(Fy, F)? = V(F)V(F) > [

where t = tp(Fp)

(15)

(16)

Many other inequalities can be taken from (6) and (14) e.g. for F' = Lo,

that is for ¢ = %

[LW(FO) - L%V(F)r
II2L2

V(Fy, F)? = V(F)V(F) >

ot

(17)



Also for ¢ = L0 the inequality (5) will be

V(FO) _ V(Fy.F) | V(F)

0>
- 12 L I

(18)

The inequality of Frobenius.

P.s.
Another easy proof of Brunn-Mincowski theorem can be as bellow.
Let (1.I") and (q,q’) two parallel strips of the convex figures Fy and F of
direction « and dy and d the breaths respectively. The homothetic F’ = tF
where ¢ = % can be translated in the strip (1I'). The line m of direction @
intersects Fy I and Fy = sFy + s'F’, 5,8 > 0,s + s = 1 into the segments
p, P, ps. We will have

/(sp + s'p")da > /spda + / s'p'da

where a the distance between (L1’).
So we take:
V(sFy+ §'F) > sV(Fy) + s'V(F')

Probably you have the question, why the first proof. That is because of the
variationality of the cutting numbers.



