The cutting numbers.

G. A. Tsintsifas

Let F_{0} and F be convex compact smooth figures in E^{2}. We see that we can find a point $z \in R^{2}$ and a number $t \in R^{+}$so that: $z+t F \in F_{0}$.
We will call inradius of F_{0} relative to F the max t. We denote $r_{F}\left(F_{0}\right)$.
With the same way we can define the circumradius of the F_{0} relative to F, that is the $\min t$ so that $z+t F \ni F_{0}$ and we denote $R_{F}\left(F_{0}\right)$.
According the above, we conclude that for every number t so that

$$
r_{F}\left(F_{0}\right)<t<R_{F}\left(F_{0}\right)
$$

and for every $z \in E^{2}$ the figure $z+t F$ is not included in F_{0} and does't include F_{0}.
We will call cutting number of F_{0} relative to F, this number t. We denote: $t_{F}\left(F_{0}\right)$, or simply t. That is:

$$
\left(z+t F \notin i n t F_{0}\right) \bigwedge\left(\operatorname{int}(z+t F) \not \supset F_{0}\right)
$$

For the present paper we need two simple propositions on the cutting numbers.

P. 1

$$
t_{F}\left(F_{0}\right) \cdot t_{F_{0}}(F)=1
$$

The proof is very easy.

P. 2

For $t=t_{F}\left(F_{0}\right)$ we can find z so that the figures $F_{0}, z+t F$ are inscribed in the same triangle $A B C$.
Indeet, we consider the insrcibed figure $F_{1}=r_{F}\left(F_{0}\right) . F$ to F_{0}. For t between the numbers $r_{F}\left(F_{0}\right), R_{F}\left(F_{0}\right)$ we find an honothetic to F_{1} figure F^{\prime} including F_{1} and included in $R_{F}(F 0) . F$. The convex cover of $F_{0} \cup F^{\prime}$ has a straight line segments in the perimeter. So there is a triangle circumscribed to $F_{0} \cup F^{\prime}$
and to both F_{0}, F^{\prime}.
Some interesting theorems can be proven using the cutting numbers.

Theorem 1

For the convex figures F_{0} and $F^{\prime}=t F$ where $t=t_{F}\left(F_{0}\right)$ holds:

$$
\begin{equation*}
\left(V\left(s F_{0}+s^{\prime} F^{\prime}\right) \geq s V\left(F_{0}\right)+s^{\prime} V\left(F^{\prime}\right)\right. \tag{1}
\end{equation*}
$$

with $s, s^{\prime}>0$ and $s+s^{\prime}=1$.
that is for the set $\left\{F_{0}, F^{\prime}+t F\right\}$, for $r_{F}\left(F_{0}\right)<t<R_{F}\left(F_{0}\right)$, the volume is linear (concave).
Proof of the theorem 1.
We translate F^{\prime} as in Proposition 2 exposed and let the triangle $A B C$ circumscribed to both figures F_{0} and F^{\prime}. (or we translate $F^{\prime}=r_{F}(A B C) . F$ inside in a circumscribed tringle to F_{0}).
Now we take a point M of the arc DE of $b d F_{0} . M M_{1}$ is the tangent segment until the side $A C$ and we use a formula of Frobenius. That is: The area of the part included between the arc DE and the angle C is:

$$
\frac{1}{2} \int_{0}^{\pi-C} M M_{1}^{2} d \phi
$$

where ϕ is the angle of $M M_{1}$ with the side $A C$

The same for F^{\prime} and $M^{\prime} M_{1}^{\prime}$, the analogous segment. The figure $s F_{0}+s^{\prime} F^{\prime}$, $s, s^{\prime}>0 s+s^{\prime}=1$ is inscribed in the triangle $A B C$ and the analogous segment is $M M_{1}+s^{\prime} M^{\prime} M_{1}^{\prime}$. We put $M M_{1}=p$ and $M^{\prime} M_{1}^{\prime}=p^{\prime}$.
Easily we find

$$
\begin{equation*}
V\left(F_{0}\right)=V(A B C)-\frac{1}{2} \int_{0}^{2 \pi} p^{2} d \phi \tag{2}
\end{equation*}
$$

Therefore

$$
P=V\left(s F_{0}+s^{\prime} F^{\prime}\right)=V(A B C)-\frac{1}{2} \int_{0}^{2 \pi}\left(s p+s^{\prime} p^{\prime}\right)^{2} d \phi
$$

From the well knwn inequality $s p^{2}+s^{\prime} p^{\prime 2} \geq\left(s p+s^{\prime} p^{\prime}\right)^{2}$ follows

$$
P \geq\left(s+s^{\prime}\right) V(A B C)-\frac{1}{2}\left[\int_{0}^{2 \pi} s p^{2} d \phi+\int_{0}^{\pi} s^{\prime} p^{\prime 2} d \phi\right]
$$

or

$$
P \geq s\left[V(A B C)-\frac{1}{2} \int_{0}^{2 \pi} p^{2} d \phi\right]+s^{\prime}\left[V(A B C)-\int_{0}^{2 \pi} p^{\prime 2} d \phi\right]
$$

finally

$$
V\left(s F_{0}+s^{\prime} F^{\prime}\right) \geq s V\left(F_{0}\right)+s^{\prime} V\left(F^{\prime}\right)
$$

The case of the equality when $s p=s^{\prime} p^{\prime}$. Here from the elementaty Geometry we conclude that $F_{0}=F^{\prime}$, or $F_{0}=t F$ that is F_{0} and F must be similar.
A number of inequalities can be obtained from our basic inequality (1). for $s=s^{\prime}=\frac{1}{2}$ we take:

$$
\begin{equation*}
V\left(\frac{F_{0}+F^{\prime}}{2}\right) \geq \frac{V\left(F_{0}\right)+V\left(F^{\prime}\right)}{2} \tag{3}
\end{equation*}
$$

It is known that:

$$
V\left(\frac{F_{0}+F^{\prime}}{2}\right)=\frac{V\left(F_{0}\right)}{4}+\frac{V\left(F^{\prime}\right)}{4}+\frac{V\left(F_{0}, F^{\prime}\right)}{8}
$$

where $V\left(F_{0}, F^{\prime}\right)$ the mixed area. The last inequality according to (3) gives:

$$
\begin{equation*}
V\left(F_{0}, F^{\prime}\right) \geq \frac{V\left(F_{0}\right)+V\left(F^{\prime}\right)}{2} \tag{4}
\end{equation*}
$$

From (4) and the A.M-G.M inequality we take

$$
\begin{equation*}
V\left(F_{0}, F^{\prime}\right)^{2} \geq V\left(F_{0}\right) V\left(F^{\prime}\right) \tag{5}
\end{equation*}
$$

We substitude in (4) and (5) $F^{\prime}=t F$. So we have

$$
\begin{gather*}
t V\left(F_{0}, F\right) \geq \frac{V\left(F_{0}\right)+t^{2} V(F)}{2} \tag{6}\\
V\left(F_{0}, F\right)^{2} \geq V\left(F_{0}\right) V(F) \tag{7}
\end{gather*}
$$

Also from

$$
V\left(s F_{0}+s^{\prime} F\right)=s^{2} V\left(F_{0}\right)+2 s s^{\prime} V\left(F_{0}, F\right)+s^{\prime 2} V(F)
$$

and from (7), we take:

Theorem 2.

$$
\begin{equation*}
V\left(s F_{0}+s^{\prime} F\right)^{\frac{1}{2}} \geq s V\left(F_{0}\right)^{\frac{1}{2}}+s^{\prime} V(F)^{\frac{1}{2}} \tag{8}
\end{equation*}
$$

The Brunn-Minkowski Theorem.

Isoperimetric inequalities

We suppose that $F=u$ is the unit circle and r_{0} the inradius of F_{0}, formula (6) will be.

$$
r_{0} V\left(F_{0}, u\right) \geq \frac{V\left(F_{0}\right)+r_{0}^{2} V(u)}{2}
$$

hence,

$$
r_{0} \frac{L_{0}}{2} \geq \frac{V\left(F_{0}\right)+\pi r_{0}^{2}}{2}
$$

That is beaucause of the well known $V\left(F_{0}, u\right)=\frac{L_{0}}{2}$.
The last relation can be written

$$
\begin{equation*}
\frac{L_{0}^{2}}{4 \pi}-V\left(F_{0}\right) \geq \frac{1}{4 \pi}\left(L_{0}-2 \pi r_{0}\right)^{2} \tag{9}
\end{equation*}
$$

That is an isoperimetric inequality of Bonnesen style.
The inequality (6) can be written

$$
\begin{equation*}
0 \geq t^{2} V(F)-2 t V\left(F_{0}, F\right)+V(F) \tag{10}
\end{equation*}
$$

From (10) we see that the cutting numbers of F_{0} relative to F are included between the real roots of the equality (10), $\frac{V\left(F_{0}, F\right)+\sqrt{D}}{V(F)}, \frac{V\left(F_{0}, F\right)-\sqrt{D}}{V(F)}$ where
$D=V\left(F_{0}, F\right)^{2}-V\left(F_{0}\right) V(F)$.
Let now $\rho_{0}=r_{F}\left(F_{0}\right)$ and $P_{0}=R_{F}\left(F_{0}\right)$. It is:

$$
\begin{equation*}
\frac{V\left(F_{0}, F\right)-\sqrt{D}}{V F)} \leq \rho_{0} \leq P_{0} \leq \frac{V\left(F_{0}, F\right)+\sqrt{D}}{V F)} \tag{11}
\end{equation*}
$$

Therefore

$$
P_{0}-\rho_{0} \leq \frac{2 \sqrt{D}}{V(F)}
$$

and finally

$$
\begin{equation*}
V\left(F_{0}, F\right)^{2}-V\left(F_{0}\right) V(F) \geq \frac{V F)^{2}\left(P_{0}-\rho_{0}\right)^{2}}{4} \tag{12}
\end{equation*}
$$

Symmetrically we can write

$$
\begin{equation*}
V\left(F_{0}, F\right)^{2}-V\left(F_{0}\right) V(F) \geq \frac{V\left(F_{0}\right)^{2}}{4}\left(\frac{1}{\rho_{0}}-\frac{1}{P_{0}}\right)^{2} \tag{13}
\end{equation*}
$$

From (12) and (13) follows

$$
V\left(F_{0}, F\right)^{2}-V\left(F_{0}\right) V(F) \geq \frac{V\left(F_{0}\right) V(F)\left(P_{0}-\rho_{0}\right)^{2}}{4 \rho_{0} R_{0}}
$$

or

$$
\begin{equation*}
V\left(F_{0}, F\right)^{2} \geq V(F) V\left(F_{0}\right) \frac{\left(R_{0}+\rho_{0}\right)^{2}}{4 R_{0} \rho_{0}} \tag{14}
\end{equation*}
$$

From (12) we can take the very well known inequality of Bonnesen for $F=u$ the unit circle and r_{0}, R_{0} the inradius and the circumradius of F_{0}.

$$
\begin{equation*}
L_{0}^{2}-4 \pi V\left(F_{0}\right) \geq \pi^{2}\left(R_{0}-r_{0}\right)^{2} \tag{15}
\end{equation*}
$$

A very interesting inequality follows from (7)

$$
\begin{equation*}
V\left(F_{0}, F\right)^{2}-V\left(F_{0}\right) V(F) \geq\left[\frac{V\left({ }_{0}\right)-t^{2} V(F)}{2 t}\right]^{2} \tag{16}
\end{equation*}
$$

where $t=t_{F}\left(F_{0}\right)$
Many other inequalities can be taken from (6) and (14) e.g. for $F^{\prime}=\frac{L_{0}}{L} L$, that is for $t=\frac{L_{0}}{L}$

$$
\begin{equation*}
V\left(F_{0}, F\right)^{2}-V\left(F_{0}\right) V(F) \geq \frac{\left[L^{2} V\left(F_{0}\right)-L_{0}^{2} V(F)\right]^{2}}{4 L_{0}^{2} L^{2}} \tag{17}
\end{equation*}
$$

Also for $t=\frac{L_{0}}{L}$ the inequality (5) will be

$$
\begin{equation*}
0 \geq \frac{V(F 0)}{L_{0}^{2}}-2 \frac{V\left(F_{0}, F\right)}{L_{0} L}+\frac{V(F)}{L^{2}} \tag{18}
\end{equation*}
$$

The inequality of Frobenius.
P.s.

Another easy proof of Brunn-Mincowski theorem can be as bellow.
Let (l.l') and ($\mathrm{q}, \mathrm{q}^{\prime}$) two parallel strips of the convex figures F_{0} and F of direction \vec{u} and d_{0} and d the breaths respectively. The homothetic $F^{\prime}=t F$ where $t=\frac{d_{0}}{d}$ can be translated in the strip (l, l^{\prime}). The line m of direction \vec{u} intersects F_{0}, F and $F_{s}=s F_{0}+s^{\prime} F^{\prime}, s, s^{\prime}>0, s+s^{\prime}=1$ into the segments p, p^{\prime}, p_{s}. We will have

$$
\int_{a}\left(s p+s^{\prime} p^{\prime}\right) d a \geq \int_{a} s p d a+\int_{a} s^{\prime} p^{\prime} d a
$$

where a the distance between ($1, l^{\prime}$).
So we take:

$$
V\left(s F_{0}+s^{\prime} F\right) \geq s V\left(F_{0}\right)+s^{\prime} V\left(F^{\prime}\right)
$$

Probably you have the question, why the first proof. That is because of the variationality of the cutting numbers.

