
The cutting numbers.

G. A. Tsintsifas

Let F0 and F be convex compact smooth figures in E2. We see that we
can find a point z ∈ R2 and a number t ∈ R+ so that: z + tF ∈ F0.
We will call inradius of F0 relative to F the max t. We denote rF (F0).
With the same way we can define the circumradius of the F0 relative to F ,
that is the min t so that z + tF 3 F0 and we denote RF (F0).
According the above, we conclude that for every number t so that

rF (F0) < t < RF (F0)

and for every z ∈ E2 the figure z+tF is not included in F0 and does’t include
F0.
We will call cutting number of F0 relative to F , this number t. We denote:
tF (F0), or simply t. That is:

(z + tF 6∈ intF0)
∧

(int(z + tF ) 63 F0)

For the present paper we need two simple propositions on the cutting num-
bers.
P.1

tF (F0).tF0(F ) = 1

The proof is very easy.
P.2
For t = tF (F0) we can find z so that the figures F0 , z + tF are inscribed in
the same triangle ABC.
Indeet, we consider the insrcibed figure F1 = rF (F0).F to F0. For t between
the numbers rF (F0), RF (F0) we find an honothetic to F1 figure F ′ including
F1 and included in RF (F0).F . The convex cover of F0∪F ′ has a straight line
segments in the perimeter. So there is a triangle circumscribed to F0 ∪ F ′
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and to both F0, F ′.
Some interesting theorems can be proven using the cutting numbers.
Theorem 1
For the convex figures F0 and F ′ = tF where t = tF (F0) holds:

(V (sF0 + s′F ′) ≥ sV (F0) + s′V (F ′) (1)

with s, s′ > 0 and s + s′ = 1.
that is for the set {F0, F

′ + tF}, for rF (F0) < t < RF (F0), the volume is
linear (concave).
Proof of the theorem 1.
We translate F ′ as in Proposition 2 exposed and let the triangle ABC cir-
cumscribed to both figures F0 and F ′. (or we translate F ′ = rF (ABC).F
inside in a circumscribed tringle to F0).
Now we take a point M of the arc DE of bdF0. MM1 is the tangent segment
until the side AC and we use a formula of Frobenius. That is: The area of
the part included between the arc DE and the angle C is:

1

2

∫ π−C

0
MM2

1 dφ.

where φ is the angle of MM1 with the side AC
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The same for F ′ and M ′M ′
1, the analogous segment. The figure sF0+s′F ′,

s, s′ > 0 s+s′ = 1 is inscribed in the triangle ABC and the analogous segment
is MM1 + s′M ′M ′

1. We put MM1 = p and M ′M ′
1 = p′.

Easily we find

V (F0) = V (ABC)− 1

2

∫ 2π

0
p2dφ (2)

Therefore

P = V (sF0 + s′F ′) = V (ABC)− 1

2

∫ 2π

0
(sp + s′p′)2dφ

From the well knwn inequality sp2 + s′p′2 ≥ (sp + s′p′)2 follows

P ≥ (s + s′)V (ABC)− 1

2

[ ∫ 2π

0
sp2dφ +

∫ π

0
s′p′2dφ

]
or

P ≥ s
[
V (ABC)− 1

2

∫ 2π

0
p2dφ

]
+ s′

[
V (ABC)−

∫ 2π

0
p′2dφ

]
finally

V (sF0 + s′F ′) ≥ sV (F0) + s′V (F ′)

The case of the equality when sp = s′p′. Here from the elementaty Geometry
we conclude that F0 = F ′, or F0 = tF that is F0 and F must be similar.
A number of inequalities can be obtained from our basic inequality (1). for
s = s′ = 1

2
we take:

V (
F0 + F ′

2
) ≥ V (F0) + V (F ′)

2
(3)

It is known that:

V (
F0 + F ′

2
) =

V (F0)

4
+

V (F ′)

4
+

V (F0, F
′)

8

where V (F0, F
′) the mixed area. The last inequality according to (3) gives:

V (F0, F
′) ≥ V (F0) + V (F ′)

2
(4)

From (4) and the A.M-G.M inequality we take

V (F0, F
′)2 ≥ V (F0)V (F ′) (5)
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We substitude in (4) and (5) F ′ = tF . So we have

tV (F0, F ) ≥ V (F0) + t2V (F )

2
(6)

V (F0, F )2 ≥ V (F0)V (F ) (7)

Also from

V (sF0 + s′F ) = s2V (F0) + 2ss′V (F0, F ) + s′2V (F )

and from (7), we take:

Theorem 2.

V (sF0 + s′F )
1
2 ≥ sV (F0)

1
2 + s′V (F )

1
2 (8)

The Brunn-Minkowski Theorem.

Isoperimetric inequalities
We suppose that F = u is the unit circle and r0 the inradius of F0,formula
(6) will be.

r0V (F0, u) ≥ V (F0) + r2
0V (u)

2

hence,

r0
L0

2
≥ V (F0) + πr2

0

2

That is beaucause of the well known V (F0, u) = L0

2
.

The last relation can be written

L2
0

4π
− V (F0) ≥

1

4π
(L0 − 2πr0)

2 (9)

That is an isoperimetric inequality of Bonnesen style.
The inequality (6) can be written

0 ≥ t2V (F )− 2tV (F0, F ) + V (F ) (10)

From (10) we see that the cutting numbers of F0 relative to F are included

between the real roots of the equality (10), V (F0,F )+
√

D
V (F )

, V (F0,F )−
√

D
V (F )

where
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D = V (F0, F )2 − V (F0)V (F ).
Let now ρ0 = rF (F0) and P0 = RF (F0). It is:

V (F0, F )−
√

D

V F )
≤ ρ0 ≤ P0 ≤

V (F0, F ) +
√

D

V F )
(11)

Therefore

P0 − ρ0 ≤
2
√

D

V (F )

and finally

V (F0, F )2 − V (F0)V (F ) ≥ V F )2(P0 − ρ0)
2

4
(12)

Symmetrically we can write

V (F0, F )2 − V (F0)V (F ) ≥ V (F0)
2

4
(

1

ρ0

− 1

P0

)2 (13)

From (12) and (13) follows

V (F0, F )2 − V (F0)V (F ) ≥ V (F0)V (F )(P0 − ρ0)
2

4ρ0R0

or

V (F0, F )2 ≥ V (F )V (F0)
(R0 + ρ0)

2

4R0ρ0

(14)

From (12) we can take the very well known inequality of Bonnesen for F = u
the unit circle and r0, R0 the inradius and the circumradius of F0.

L2
0 − 4πV (F0) ≥ π2(R0 − r0)

2 (15)

A very interesting inequality follows from (7)

V (F0, F )2 − V (F0)V (F ) ≥
[
V (0)− t2V (F )

2t

]2

(16)

where t = tF (F0)
Many other inequalities can be taken from (6) and (14) e.g. for F ′ = L0

L
L,

that is for t = L0

L

V (F0, F )2 − V (F0)V (F ) ≥

[
L2V (F0)− L2

0V (F )
]2

4L2
0L

2
(17)
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Also for t = L0

L
the inequality (5) will be

0 ≥ V (F0)

L2
0

− 2
V (F0, F )

L0L
+

V (F )

L2
(18)

The inequality of Frobenius.
P.s.

Another easy proof of Brunn-Mincowski theorem can be as bellow.
Let (l.l’) and (q,q’) two parallel strips of the convex figures F0 and F of
direction ~u and d0 and d the breaths respectively. The homothetic F ′ = tF
where t = d0

d
can be translated in the strip (l,l’). The line m of direction ~u

intersects F0 ,F and Fs = sF0 + s′F ′, s, s′ > 0, s + s′ = 1 into the segments
p, p′, ps. We will have∫

a
(sp + s′p′)da ≥

∫
a
spda +

∫
a
s′p′da

where a the distance between (l,l’).
So we take:

V (sF0 + s′F ) ≥ sV (F0) + s′V (F ′)

Probably you have the question, why the first proof. That is because of the
variationality of the cutting numbers.
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